A332253 Triangle read by rows: T(n,k) is the number of multiset partitions of weight n whose union is a k-set where each part has a different size.
1, 0, 1, 0, 1, 1, 0, 2, 6, 4, 0, 2, 9, 12, 5, 0, 3, 22, 51, 48, 16, 0, 4, 50, 199, 346, 275, 82, 0, 5, 80, 411, 972, 1175, 708, 169, 0, 6, 134, 939, 3061, 5340, 5160, 2611, 541, 0, 8, 244, 2279, 9948, 23850, 33432, 27391, 12176, 2272, 0, 10, 461, 6261, 38866, 132151, 267459, 331583, 247448, 102195, 17966
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 2, 6, 4; 0, 2, 9, 12, 5; 0, 3, 22, 51, 48, 16; 0, 4, 50, 199, 346, 275, 82; 0, 5, 80, 411, 972, 1175, 708, 169; 0, 6, 134, 939, 3061, 5340, 5160, 2611, 541; ... The T(3,1) = 2 multiset partitions are: {{1,1,1}} {{1},{1,1}} The T(3,2) = 6 multiset partitions are: {{1,1,2}} {{1,2,2}} {{1},{1,2}} {{1},{2,2}} {{2},{1,1}} {{2},{1,2}} The T(3,3) = 4 multiset partitions are: {{1,2,3}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Programs
-
PARI
R(n, k)={Vec(prod(j=1, n, 1 + binomial(k+j-1, j)*x^j + O(x*x^n)))} M(n)={my(v=vector(n+1, k, R(n, k-1)~)); Mat(vector(n+1, k, k--; sum(i=0, k, (-1)^(k-i)*binomial(k, i)*v[1+i])))} {my(T=M(8)); for(n=1, #T~, print(T[n, ][1..n]))}
Comments