cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332269 Numbers m with only one divisor d such that sqrt(m) < d < m.

Original entry on oeis.org

6, 8, 10, 14, 15, 16, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 81, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Bernard Schott, May 04 2020

Keywords

Comments

Equivalently: numbers with only one proper divisor > sqrt(n).
Also: numbers with only one nontrivial divisor d with 1 < d < sqrt(n).
Four subsequences (see examples):
1) Squarefree semiprimes (A006881) p*q with p < q, then this unique divisor is q.
2) Cube of primes p^3 (A030078), then this unique divisor is p^2.
3) Primes^4 (A030514), then this unique divisor is p^3.
4) Numbers with 4 divisors: A030513 = A006881 Union A030078.
For n = 1 to n = 21, we have a(n) = A319238(n) = A331231(n) but a(22) = 65 <> A319238(22) = A331231(22) = 64.
From Marius A. Burtea, May 07 2020: (Start)
The sequence contains terms that are consecutive numbers.
If the numbers 4*k + 1 and 6*k + 1, k >= 1, are prime numbers, then the numbers 12*k + 2 and 12*k + 3 are terms. Examples: (14, 15), (38, 39), (86, 87), (122, 123), (158, 159), (218, 219), (302, 303), ...
If the numbers 6*m + 1, 10*m + 1 and 15*m + 2, m >= 1, are prime numbers, then the numbers 30*m + 3, 30*m + 4 and 30*m + 5 are terms. Examples: (33, 34, 35), (93, 94, 95), (213, 214, 215), (393, 394, 395), (633, 634, 635), ... (End)
There are never more than 3 consecutive terms because one of them would be divisible by 4, and neither 8 nor 16 belong to such a string of 4 consecutive terms.

Examples

			The divisors of 15 are {1, 3, 5, 15} and only 5 satisfies sqrt(15) < 5 < 15, hence 15 is a term.
The divisors of 27 are {1, 3, 9, 27} and only 9 satisfies sqrt(27) < 9 < 27, hence 27 is a term.
The divisors of 16 are {1, 2, 4, 8, 16} and only 8 satisfies sqrt(16) < 8 < 16, hence 16 is a term.
The divisors of 28 are {1, 2, 4, 7, 14, 28} but 7 and 14 satisfy sqrt(28) < 7 < 14 < 28, hence 28 is not a term.
		

Crossrefs

Disjoint union of A006881, A030078, and A030514.
Disjoint union of A030513 and A030514.

Programs

  • Magma
    [k:k in [1..200]|#[d:d in Divisors(k)|d gt Sqrt(k) and d lt k] eq 1]; // Marius A. Burtea, May 07 2020
  • Mathematica
    Select[Range[200], MemberQ[{4, 5}, DivisorSigma[0, #]] &] (* Amiram Eldar, May 04 2020 *)
  • PARI
    isok(m) = #select(x->(x^2 > m), divisors(m)) == 2; \\ Michel Marcus, May 05 2020
    

Formula

m is a term iff tau(m) - A038548(m) = 2 where tau = A000005.