A332277 Number of widely totally normal integer partitions of n.
1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 4, 4, 6, 3, 5, 7, 6, 8, 12, 9, 12, 13, 11, 12, 18, 17, 12, 32, 19, 25, 33, 30, 28, 44, 33, 43, 57, 51, 60, 83, 70, 83, 103, 96, 97, 125, 117, 134, 157, 157, 171, 226, 215, 238, 278, 302, 312, 359, 357, 396, 450, 444, 477, 580
Offset: 0
Keywords
Examples
The a(n) partitions for n = 1, 4, 10, 11, 16, 18: 1 211 4321 33221 443221 543321 1111 33211 322211 4432111 4333221 322111 332111 1111111111111111 4432221 1111111111 11111111111 4433211 43322211 44322111 111111111111111111
Crossrefs
Normal partitions are A000009.
Taking multiplicities instead of run-lengths gives A317245.
Constantly recursively normal partitions are A332272.
The Heinz numbers of these partitions are A332276.
The case of all compositions (not just partitions) is A332279.
The co-strong version is A332278.
The recursive version is A332295.
The narrow version is a(n) + 1 for n > 1.
Programs
-
Mathematica
recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]]; Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
Extensions
a(61)-a(66) from Jinyuan Wang, Jun 26 2020
Comments