A332280 Number of integer partitions of n with unimodal run-lengths.
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0
Keywords
Examples
The a(10) = 41 partitions (A = 10) are: (A) (61111) (4321) (3211111) (91) (55) (43111) (31111111) (82) (541) (4222) (22222) (811) (532) (42211) (222211) (73) (5311) (421111) (2221111) (721) (5221) (4111111) (22111111) (7111) (52111) (3331) (211111111) (64) (511111) (3322) (1111111111) (631) (442) (331111) (622) (4411) (32221) (6211) (433) (322111) Missing from this list is only (33211).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Unimodal Sequence
Crossrefs
The complement is counted by A332281.
Heinz numbers of these partitions are the complement of A332282.
Taking 0-appended first-differences instead of run-lengths gives A332283.
The normal case is A332577.
The opposite version is A332638.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Numbers whose unsorted prime signature is unimodal are A332288.
Programs
-
Maple
b:= proc(n, i, m, t) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m), j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t))) end: a:= n-> b(n$2, 0, true): seq(a(n), n=0..65); # Alois P. Heinz, Feb 20 2020
-
Mathematica
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}] (* Second program: *) b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]]; a[n_] := b[n, n, 0, True]; a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Comments