A332281 Number of integer partitions of n whose run-lengths are not unimodal.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 10, 16, 24, 33, 51, 70, 100, 137, 189, 250, 344, 450, 597, 778, 1019, 1302, 1690, 2142, 2734, 3448, 4360, 5432, 6823, 8453, 10495, 12941, 15968, 19529, 23964, 29166, 35525, 43054, 52173, 62861, 75842, 91013, 109208
Offset: 0
Keywords
Examples
The a(10) = 1 through a(15) = 10 partitions: (33211) (332111) (44211) (44311) (55211) (44322) (3321111) (333211) (433211) (55311) (442111) (443111) (443211) (33211111) (3332111) (533211) (4421111) (552111) (332111111) (4332111) (4431111) (33321111) (44211111) (3321111111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Unimodal Sequence
Crossrefs
Programs
-
Maple
b:= proc(n, i, m, t) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m), j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t))) end: a:= n-> combinat[numbpart](n)-b(n$2, 0, true): seq(a(n), n=0..65); # Alois P. Heinz, Feb 20 2020
-
Mathematica
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]] Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,30}] (* Second program: *) b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]]; a[n_] := PartitionsP[n] - b[n, n, 0, True]; a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Comments