cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332305 Number of compositions (ordered partitions) of n into distinct parts such that number of parts is even.

Original entry on oeis.org

1, 0, 0, 2, 2, 4, 4, 6, 6, 8, 32, 34, 58, 84, 132, 158, 230, 280, 376, 450, 570, 1388, 1556, 2398, 3310, 4920, 6600, 9674, 12122, 16684, 21340, 28110, 34974, 45392, 55208, 69274, 124498, 143676, 204012, 270758, 377966, 493024, 690304, 895434, 1223826, 1562948
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2020

Keywords

Examples

			a(5) = 4 because we have [4, 1], [3, 2], [2, 3] and [1, 4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[(2 k)! x^(k (2 k + 1))/Product[1 - x^j, {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} (2*k)! * x^(k*(2*k + 1)) / Product_{j=1..2*k} (1 - x^j).
a(n) = A032020(n) - A332304(n).