cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A332386 Numbers k such that k and k + 1 have the same number of divisors in Eisenstein integers.

Original entry on oeis.org

3, 7, 32, 50, 68, 174, 184, 200, 212, 219, 247, 291, 328, 343, 368, 376, 435, 472, 495, 543, 579, 608, 644, 679, 712, 716, 723, 788, 795, 849, 860, 871, 874, 904, 932, 939, 1011, 1015, 1058, 1074, 1076, 1159, 1184, 1220, 1227, 1336, 1359, 1384, 1436, 1495, 1515
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2020

Keywords

Examples

			3 is a term since 3 and 4 both have 3 divisors in Eisenstein integers.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; SequencePosition[eisNumDiv /@ Range[1520], {x_, x_}][[All, 1]] (* after Harvey P. Dale at A005237 *)

A332388 Numbers k such that k, k + 1, k + 2 and k + 3 have the same number of divisors in Eisenstein integers.

Original entry on oeis.org

34193750, 76788050, 78267398, 113004199, 135383873, 148843670, 170293249, 199259222, 311313398, 318128599, 364828550, 368222599, 381026822, 384839047, 420686749, 428129222, 430154150, 432466824, 450050450, 462825847, 492828521, 510703975, 517126773, 518268772
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2020

Keywords

Examples

			34193750 is a term since 34193750, 34193751, 34193752 and 34193750 each have 24 divisors in Eisenstein integers.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[p, 3], 0, 2*e + 1, 1, (e + 1)^2, 2, e + 1]; eisNumDiv[1] = 1; eisNumDiv[n_] := Times @@ f @@@ FactorInteger[n]; m = 4; s = eisNumDiv /@ Range[m]; seq = {}; n = m + 1; While[Length[seq] < 10, If[Length @ Union[s] == 1, AppendTo[seq, n - m + 1]]; n++; s = Join[Rest[s], {eisNumDiv[n]}]]; seq

A355711 Starts of runs of 3 consecutive numbers with the same number of 5-smooth divisors.

Original entry on oeis.org

33, 85, 93, 145, 213, 265, 393, 445, 453, 475, 505, 633, 685, 753, 805, 813, 865, 933, 985, 993, 1045, 1113, 1165, 1293, 1345, 1353, 1405, 1430, 1533, 1585, 1624, 1653, 1705, 1713, 1765, 1833, 1885, 1893, 1945, 2013, 2065, 2193, 2245, 2253, 2275, 2305, 2433, 2485
Offset: 1

Views

Author

Amiram Eldar, Jul 15 2022

Keywords

Comments

Numbers k such that A355583(k) = A355583(k+1) = A355583(k+2).

Examples

			33 is a term since A355583(33) = A355583(34) = A355583(35) = 2.
		

Crossrefs

Cf. A355583.
Subsequence of A355710.
A355712 is a subsequence.
Similar sequences: A005238, A006073, A045939, A332313, A332387.

Programs

  • Mathematica
    f[n_] := Times @@ (1 + IntegerExponent[n, {2, 3, 5}]); s = {}; m = 3; fs = f /@ Range[m]; Do[If[Equal @@ fs, AppendTo[s, n - m]]; fs = Rest @ AppendTo[fs, f[n]], {n, m + 1, 2500}]; s
  • PARI
    s(n) = (valuation(n, 2) + 1) * (valuation(n, 3) + 1) * (valuation(n, 5) + 1);
    s1 = s(1); s2 = s(2); for(k = 3, 2500, s3 = s(k); if(s1 == s2 && s2 == s3, print1(k-2,", ")); s1 = s2; s2 = s3);
Showing 1-3 of 3 results.