A332390 Array read by antidiagonals: T(m,n) is the number of minimal total dominating sets in the m X n king graph.
0, 1, 1, 2, 6, 2, 1, 10, 10, 1, 2, 15, 20, 15, 2, 4, 52, 52, 52, 52, 4, 3, 105, 179, 141, 179, 105, 3, 4, 175, 418, 801, 801, 418, 175, 4, 8, 481, 1167, 2950, 7770, 2950, 1167, 481, 8, 9, 1028, 3498, 9792, 34790, 34790, 9792, 3498, 1028, 9, 10, 2000, 9074, 47527, 184318, 204372, 184318, 47527, 9074, 2000, 10
Offset: 1
Examples
Array begins: ================================================================ m\n | 1 2 3 4 5 6 7 8 ----+----------------------------------------------------------- 1 | 0 1 2 1 2 4 3 4 ... 2 | 1 6 10 15 52 105 175 481 ... 3 | 2 10 20 52 179 418 1167 3498 ... 4 | 1 15 52 141 801 2950 9792 47527 ... 5 | 2 52 179 801 7770 34790 184318 1305358 ... 6 | 4 105 418 2950 34790 204372 1593094 14720683 ... 7 | 3 175 1167 9792 184318 1593094 16260853 231301551 ... 8 | 4 481 3498 47527 1305358 14720683 231301551 4570906041 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..120
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
Crossrefs
Formula
T(n,m) = T(m,n).