A332409 a(n) = n!! mod Fibonacci(n).
0, 0, 1, 2, 0, 0, 1, 6, 27, 45, 71, 0, 228, 73, 605, 861, 956, 2376, 1199, 5235, 7137, 5017, 21617, 40320, 49250, 72900, 94129, 253071, 125204, 188760, 786046, 1041600, 3306329, 2717231, 8692580, 4869072, 10661888, 33618132, 14333453, 66880275, 110783982
Offset: 1
Examples
For n = 1, a(1) = 1!! mod Fibonacci(1) = 1 mod 1 = 0. For n = 4, a(4) = 4!! mod Fibonacci(4) = 8 mod 3 = 2.
Programs
-
Mathematica
Table[Mod[n!!,Fibonacci[n]],{n,50}] (* Harvey P. Dale, Sep 08 2020 *)
-
PARI
a0(n) = my(f=fibonacci(n)); prod(i=0, (n-1)\2, n - 2*i) % f; \\ Michel Marcus, Mar 17 2020
Formula
a(n) = n!! mod Fibonacci(n).
where n!! denotes the double factorial of n (n!! = n*a(n-2) for n > 1, a(0) = a(1) = 1), and Fibonacci(n) denotes the n-th Fibonacci number.
Comments