A332439 Primitive period of the partial sums of the periodic unsigned Schick sequence for N = 7 (A130794), taken modulo 14, and the related Euler tour using all regular 14-gon vertices.
0, 1, 6, 9, 10, 1, 4, 5, 10, 13, 0, 5, 8, 9, 0, 3, 4, 9, 12, 13, 4, 7, 8, 13, 2, 3, 8, 11, 12, 3, 6, 7, 12, 1, 2, 7, 10, 11, 2, 5, 6, 11
Offset: 0
References
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
Links
- Gerold Brändli and Tim Beyne, Modified Congruence Modulo n with Half the Amount of Residues, arXiv:1504.02757 [math.NT], 2015-2016.
- Wolfdieter Lang, Figure: A directed Euler tour on the regular 14-gon with length 42
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Programs
-
PARI
get(v, j) = my(x=lift(Mod(j, #v))); if (x==0, x = #v); v[x]; vector(42, k, k--; sum(j=1, k, get([1,5,3], j)) % 14) \\ Michel Marcus, Jun 11 2020
Comments