A332526 Decimal expansion of the minimal distance between distinct branches of the tangent function; see Comments.
2, 3, 7, 5, 0, 6, 9, 1, 4, 6, 0, 4, 0, 1, 7, 6, 3, 4, 9, 4, 3, 9, 8, 5, 1, 5, 5, 8, 7, 7, 8, 9, 8, 2, 4, 8, 7, 8, 6, 6, 2, 6, 7, 8, 0, 6, 5, 0, 8, 8, 4, 1, 7, 9, 2, 9, 2, 6, 9, 8, 5, 6, 4, 5, 9, 7, 5, 4, 8, 6, 6, 7, 0, 2, 9, 6, 9, 1, 3, 1, 6, 3, 3, 4, 1, 1
Offset: 1
Examples
minimal distance = 2.375069146040176349439851558778982487866267806508...
Programs
-
Mathematica
min = Quiet[FindMinimum[Sqrt[(#[[1]][[1]] - #[[2]][[1]])^2 + (#[[1]][[2]] - \ #[[2]][[2]])^2] &[{{#, Tan[#]} &[x /. FindRoot[# Cos[#]^2 - x Cos[#]^2 + Tan[#] == Tan[x], {x, 0}, WorkingPrecision -> 500]], {#, Tan[#]} &[#]} &[y]], {y, 2}, WorkingPrecision -> 100]] Show[Plot[{Tan[x], (-# Sec[#]^2) + x Sec[#]^2 + Tan[#], {(# Cos[#]^2) - x Cos[#]^2 + Tan[#]}}, {x, 0, Pi}, AspectRatio -> Automatic, ImageSize -> 300, PlotRange -> {-2, 2}], Graphics[{PointSize[Large], Point[{Pi/2, 0}], Point[{#, Tan[#]}], Point[{Pi - #, -Tan[#]}]}]] &[y /. min[[2]][[1]]] (* Peter J. C. Moses, May 06 2020 *)
Comments