A332596 Number of quadrilateral regions in a "frame" of size n X n (see Comments in A331776 for definition), divided by 8.
0, 1, 10, 26, 63, 107, 189, 294, 455, 627, 891, 1202, 1650, 2121, 2719, 3392, 4292, 5239, 6470, 7832, 9463, 11129, 13205, 15460, 18164, 20919, 24130, 27572, 31679, 35945, 40977, 46340, 52384, 58511, 65421, 72718, 81104, 89589, 98989, 108860, 120062, 131551
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- Scott R. Shannon, Colored illustration for a(3) = 10 (there are 8*10 quadrilaterals).
Programs
-
Maple
V := proc(m, n, q) local a, i, j; a:=0; for i from 1 to m do for j from 1 to n do if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end; f := n -> if n=1 then 0 else 8*n^2 - 36*n + 24 + 4*V(n,n,1) 8*V(n, n, 2); fi; [seq(f(n)/8, n=1..60)]; # N. J. A. Sloane, Mar 10 2020
-
PARI
a(n) = sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0)))/2 - sum(i=1, n, sum(j=1, n, if(gcd(i, j)==2, (n+1-i)*(n+1-j), 0))) + n^2 - 9*n/2 + 3; \\ Jinyuan Wang, Aug 07 2021
-
Python
from sympy import totient def A332596(n): return 0 if n == 1 else ((n-1)*(n-4) - sum(totient(i)*(n+1-i)*(2*n+2-7*i) for i in range(2,n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1,n+1)))//2 # Chai Wah Wu, Aug 16 2021
Formula
For n > 1, a(n) = ((n-1)*(n-4) - Sum_{i=2..floor(n/2)} (n+1-i)*(2*n+2-7*i)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i))/2. - Chai Wah Wu, Aug 16 2021
Extensions
More terms from N. J. A. Sloane, Mar 10 2020
Comments