cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332645 Decimal expansion of Sum_{n>=1} 1/z(n)^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 2, 3, 1, 0, 4, 9, 9, 3, 1, 1, 5, 4, 1, 8, 9, 7, 0, 7, 8, 8, 9, 3, 3, 8, 1, 0, 4, 3, 0, 3, 3, 9, 0, 1, 4, 0, 0, 3, 3, 8, 1, 7, 6, 0, 3, 9, 7, 4, 2, 2, 0, 9, 0, 1, 2, 3, 1, 8, 2, 5, 0, 0, 5, 6, 0, 7, 6, 3, 7, 4, 7, 9, 5, 4, 0, 0, 6, 1, 6, 3, 1, 3, 9, 8, 4, 4, 4, 8, 6, 7, 8, 3, 1, 5, 8, 9, 8, 0, 0, 6, 9, 7, 6, 7, 7
Offset: 0

Views

Author

Artur Jasinski, Feb 18 2020

Keywords

Examples

			0.0231049931154189707889338104303390140033817603974220901231825...
		

References

  • J. P. Gram, "Note sur le calcul de la fonction zeta(s) de Riemann", Det Kgl. Danske Vid. Selsk. Overs., 1895, pp. 303-308. p.307 (16 decimal digits).
  • Charles Jean De La Vallée Poussin, Sur La Fonction de Riemann Et Le Nombre Des Nombres Premiers Inférieurs à Une Limite Donnee, 1899.

Crossrefs

Programs

  • Maple
    evalf((-32 - log(Pi)^2 + Psi(0, 1/4)^2 + Psi(1, 1/4) + 4*(Psi(0, 1/4) * Zeta(1, 1/2) + Zeta(2, 1/2)) / Zeta(1/2)) / 8, 120); # Vaclav Kotesovec, Feb 19 2020
  • Mathematica
    Join[{0}, RealDigits[N[-4 + Catalan + Pi^2/8 + (Zeta''[1/2]/Zeta[1/2] - (Zeta'[1/2] / Zeta[1/2])^2)/2, 105]][[1]]]
    N[SeriesCoefficient[Log[s*(s-1)*Pi^(-s/2)*Gamma[s/2]*Zeta[s]/2], {s, 1/2, 2}], 105] (* Vaclav Kotesovec, Feb 19 2020 *)

Formula

Equals -4 + G + Pi^2/8 + (1/2)(zeta''(1/2)/zeta(1/2) - (zeta'(1/2)/zeta(1/2))^2) where G is the Catalan constant A006752.
Equals G - 4 + (Pi^2 - (gamma + Pi/2 + log(8*Pi))^2) / 8 + zeta''(1/2) / (2*zeta(1/2)), where gamma is the Euler-Mascheroni constant A001620 and G is the Catalan constant A006752. - Vaclav Kotesovec, Feb 19 2020
Also equals (-32 - log(Pi)^2 + psi(0, 1/4)^2 + psi(1, 1/4) + 4*(psi(0, 1/4) * zeta'(1/2) + zeta''(1/2)) / zeta(1/2)) / 8, where psi(0, 1/4) = -A020777 and psi(1, 1/4) = A282823. - Vaclav Kotesovec, Feb 19 2020