A333360 Decimal expansion of Sum_{n>=1} 1/z(n)^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
0, 0, 0, 7, 2, 9, 5, 4, 8, 2, 7, 2, 7, 0, 9, 7, 0, 4, 2, 1, 5, 8, 7, 5, 5, 1, 8, 5, 6, 9, 0, 9, 3, 9, 7, 0, 5, 0, 3, 3, 5, 1, 5, 0, 5, 7, 0, 3, 5, 5, 4, 2, 3, 7, 3, 5, 8, 9, 6, 5, 2, 7, 4, 4, 6, 6, 6, 1, 2, 3, 0, 2, 4, 4, 7, 1, 3, 2, 9, 1, 2, 8, 7, 8, 3, 2, 5, 6, 3, 9, 6, 7, 1, 7, 6, 2, 8, 3, 8, 4, 6, 5, 6, 7, 0, 2, 4, 1, 4, 3, 5, 8, 5, 2, 4
Offset: 0
Examples
0.00072954827270970421...
Links
- Artur Jasinski, Table of n, a(n) for n = 0..497
- mpmath, Online versions.
- Artur Kawalec, The recurrence formulas for primes and non-trivial zeros of the Riemann zeta function, arxiv:2009.02640 [math.NT], 2020.
- Artur Kawalec, Analytical recurrence formulas for non-trivial zeros of the Riemann zeta function, arxiv:2012.06581 [math.NT], 2021.
- Artur Kawalec, The inverse Riemann zeta function, arxiv:2106.06915 [math.NT], 2021, p. 38 formula (146).
- Juan Arias de Reyna, Computation of the secondary zeta function, arxiv:2006.04869 [math.NT], 2020.
- André Voros, Zeta functions for the Riemann zeros, arXiv:math/0104051 [math.CV], 2002-2003, p. 25 Table 2.
- André Voros, Zeta functions for the Riemann zeros, 2001(2008) p. 20 Table 1.
- André Voros, Zeta functions for the Riemann zeros, Annales de l'Institut Fourier, Tome 53 (2003) no. 3, pp. 665-699.
Crossrefs
Programs
-
Python
from mpmath import * mp.dps = 90 nprint(secondzeta(3), 78)
Formula
No explicit formula is known (André Voros, personal communication to Artur Jasinski, Mar 09 2020).
Comments