A335814 Decimal expansion of Sum_{n>=1} 1/z(n)^5 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
0, 0, 0, 0, 0, 2, 2, 3, 1, 1, 8, 8, 6, 9, 9, 5, 0, 2, 1, 0, 3, 3, 2, 8, 6, 4, 0, 6, 2, 8, 6, 9, 1, 8, 3, 7, 1, 9, 3, 3, 7, 6, 0, 7, 6, 4, 3, 1, 0, 8, 7, 9, 3, 4, 4, 8, 9, 7, 7, 8, 2, 2, 6, 1, 7, 9, 8, 5, 9, 7, 8, 1, 2, 2, 2, 1, 5, 2, 4, 2, 3, 6, 5, 8, 2, 4, 7, 0, 9, 5, 4, 4, 6, 6, 1, 3, 6, 8, 3, 3, 9, 6, 6, 4, 4, 0, 2, 4, 7, 2, 9, 7, 2, 8, 6
Offset: 0
Examples
0.0000022311886995021033286406286918...
Links
- Artur Jasinski, Table of n, a(n) for n = 0..350
- Artur Kawalec, The recurrence formulas for primes and non-trivial zeros of the Riemann zeta function, arxiv:2009.02640 [math.NT], 2020.
- Artur Kawalec, Analytical recurrence formulas for non-trivial zeros of the Riemann zeta function, arxiv:2012.06581 [math.NT], 2021.
- Artur Kawalec, The inverse Riemann zeta function, arxiv:2106.06915 [math.NT], 2021 p. 38 formula (146).
- Juan Arias de Reyna, Computation of the secondary zeta function, arxiv:2006.04869 [math.NT], 2020.
Crossrefs
Programs
-
Python
from mpmath import * mp.dps = 90 nprint(secondzeta(5), 78)
Formula
No explicit formula for Sum_{n>=1} 1/z(n)^k is known for odd exponents k (André Voros, personal communication to Artur Jasinski, Mar 09 2020).
Comments