cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A333360 Decimal expansion of Sum_{n>=1} 1/z(n)^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 7, 2, 9, 5, 4, 8, 2, 7, 2, 7, 0, 9, 7, 0, 4, 2, 1, 5, 8, 7, 5, 5, 1, 8, 5, 6, 9, 0, 9, 3, 9, 7, 0, 5, 0, 3, 3, 5, 1, 5, 0, 5, 7, 0, 3, 5, 5, 4, 2, 3, 7, 3, 5, 8, 9, 6, 5, 2, 7, 4, 4, 6, 6, 6, 1, 2, 3, 0, 2, 4, 4, 7, 1, 3, 2, 9, 1, 2, 8, 7, 8, 3, 2, 5, 6, 3, 9, 6, 7, 1, 7, 6, 2, 8, 3, 8, 4, 6, 5, 6, 7, 0, 2, 4, 1, 4, 3, 5, 8, 5, 2, 4
Offset: 0

Views

Author

Artur Jasinski, Mar 16 2020

Keywords

Comments

a(1)-a(7) published by André Voros in 2001.
a(8)-a(20) computed by David Platt, Mar 15 2020.
a(21)-a(78) computed by Fredrik Johansson, Aug 04 2022 by mpmath procedure.
a(79)-a(350) computed by Artur Kawalec, Aug 15 2022 up to 350 decimal digits on basis algorithm of Juan Arias de Reyna.
a(351)-a(495) computed by Juan Arias de Reyna, using his implementation in mpmath from 2010, documented in his paper from 2020 (see link).
b-file on basis data from email Aug 16 2022 of Juan Arias de Reyna to Artur Jasinski.
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727...; this sequence.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
Sum_{r>=1} Sum_{m>=n+1} 1/(z(r)*z(m))^3 = 0.00000619403... see A355283.

Examples

			0.00072954827270970421...
		

Crossrefs

Programs

  • Python
    from mpmath import *
    mp.dps = 90
    nprint(secondzeta(3), 78)

Formula

No explicit formula is known (André Voros, personal communication to Artur Jasinski, Mar 09 2020).

A335815 Decimal expansion of Sum_{n>=1} 1/z(n)^4 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 3, 7, 1, 7, 2, 5, 9, 9, 2, 8, 5, 2, 6, 9, 6, 8, 6, 1, 6, 4, 8, 6, 6, 2, 6, 2, 4, 7, 1, 7, 4, 0, 5, 7, 8, 4, 5, 3, 6, 5, 0, 8, 8, 9, 7, 3, 0, 0, 8, 3, 2, 1, 3, 5, 7, 5, 5, 0, 6, 3, 7, 1, 8, 4, 6, 1, 3, 3, 2, 9, 8, 8, 4, 5, 7, 2, 8, 1, 3, 7, 2, 9, 7, 6, 0, 3, 5, 7, 2, 3, 3, 7, 4, 2, 4, 2, 9, 6, 0, 2, 8, 3, 7, 0, 0
Offset: 0

Views

Author

Artur Jasinski, Jun 25 2020

Keywords

Comments

Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; this sequence.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.

Examples

			0.0000371725992852696861648662624717405784536508897300...
		

Crossrefs

Programs

  • Mathematica
    Join[{0,0,0,0},RealDigits[N[-1/12*(D[Log[Zeta[x]],{x,4}]/. x -> 1/2) - 1/24 Pi^4 -(Zeta[4, 1/4] - Zeta[4, 3/4])/64 + 16, 105]][[1]]]

Formula

Equals 16-Pi^4/24+(Zeta[4,3/4]-Zeta[4,1/4])/64-(Log[Zeta[x]]''''[1/2])/24

A335826 Decimal expansion of Sum_{n>=1} 1/z(n)^6 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 4, 1, 7, 3, 9, 3, 1, 4, 0, 0, 9, 7, 3, 2, 7, 9, 6, 9, 5, 3, 8, 1, 5, 5, 6, 0, 9, 4, 8, 2, 0, 9, 0, 7, 0, 3, 6, 8, 8, 3, 0, 0, 8, 5, 0, 9, 0, 9, 8, 1, 1, 8, 7, 1, 5, 9, 9, 9, 3, 6, 4, 2, 1, 7, 9, 0, 5, 3, 9, 4, 6, 3, 1, 6, 8, 9, 6, 4, 0, 8, 1, 9, 5, 5, 0, 6, 7, 4, 2, 0, 4, 6, 8, 3, 8, 8, 8, 3, 4, 2, 3, 0, 5
Offset: 0

Views

Author

Artur Jasinski, Jun 25 2020

Keywords

Comments

Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.

Examples

			0.000000144173931400973279695381556....
		

Crossrefs

Programs

  • Mathematica
    m = 3; Join[{0, 0, 0, 0, 0, 0},RealDigits[N[((-1)^m (2^(2 m) - ((2^(2 m) - 1) Zeta[2 m] + (Zeta[2 m, 1/4] - Zeta[2 m, 3/4])/2^(2 m))/4 - (D[Log[Zeta[x]], {x, 2 m}] /. x -> 1/2)/(2 (2 m - 1)!) )), 105]][[1]]]

Formula

Universal formula for Sum_{n>=1} 1/z(n)^(2m) published in Voros 2002-2003 p. 22 (see Mathematica procedure below).

A355283 Decimal expansion of the constant B(3) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^3 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 9, 4, 0, 3, 3, 3, 7, 5, 4, 0, 6, 3, 6, 9, 8, 3, 6, 7, 2, 7, 2, 4, 8, 7, 9, 8, 1, 5, 4, 7, 5, 0, 6, 6, 4, 5, 0, 0, 6, 4, 5, 6, 7, 0, 1, 0, 0, 0, 0, 1, 0, 8, 9, 6, 8, 8, 8, 7, 7, 9, 5, 3, 1, 0, 3, 1, 0, 9, 3, 5, 3, 2, 5, 7, 7, 2, 6, 0, 6, 5, 8, 0, 3, 8, 6, 3, 6, 8, 8, 3, 1, 7, 5, 3, 5, 1, 5, 1, 8, 8, 4, 4, 6, 0, 5, 1, 7, 4
Offset: 0

Views

Author

Artur Jasinski, Aug 20 2022

Keywords

Examples

			0.0000001940333754063698367... = 1.940333754063698367*10^(-7).
		

Crossrefs

Formula

Equals (A333360^2 - A335826)/2.
No simpler formula is known.

A337365 Decimal expansion of imaginary part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function and i=sqrt(-1).

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 4, 3, 8, 2, 6, 9, 3, 1, 2, 5, 0, 6, 9, 5, 3
Offset: 0

Views

Author

Artur Jasinski, Aug 26 2020

Keywords

Comments

For the decimal expansion of the real part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function see A337404.
Sum_{m>=1} 1/(1/2 + i*z(m))^1 = 0.01154785448306... - i*A where 0.01154785448306 = A074760/2 and A > 10.5.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 = -0.0230771586479... - i*0.000728434... where -0.0230771586479 = A245275/2
Sum_{m>=1} 1/(1/2 + i*z(m))^3 = -0.000055579115726... + i*0.0007262105... where -0.000055579115726 = A245276/2
Sum_{m>=1} 1/(1/2 + i*z(m))^4 = 0.0000368136106308... + i*0.0000044382...
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/z(m)^6 = 0.0000001441739314...; see A335826.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276

Examples

			0.000004438269312506953
		

Crossrefs

Programs

  • Mathematica
    (* 7-day-long procedure *)
    kk = 0; Do[kk = kk + 1/(N[ZetaZero[n], 100])^4 , {n, 1, 1000000}]; Take[Join[{0, 0, 0, 0, 0}, RealDigits[Im[kk]][[1]]], 11]

Formula

No explicit formula is known.

A337404 Decimal expansion of real part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function and i=sqrt(-1).

Original entry on oeis.org

0, 0, 0, 0, 3, 6, 8, 1, 3, 6, 1, 0, 6, 3, 0, 8, 4, 4, 7, 5, 9, 1, 6, 3, 3, 8, 5, 6, 5, 3, 5, 1, 5, 3, 0, 0, 7, 5, 5, 6, 5, 6, 4, 1, 5, 7, 9, 8, 1, 3, 7, 0, 5, 0, 1, 4, 5, 2, 2, 3, 1, 7, 1, 1, 7, 8, 8, 1, 5, 1, 8, 9, 0, 8, 7, 9, 0, 8, 5, 9, 4, 5, 8, 4, 1, 1, 2, 2, 0, 2, 7, 8, 5, 5, 2, 9, 3, 9, 6, 1, 7, 9, 0, 2, 4, 1, 4, 3, 8
Offset: 0

Views

Author

Artur Jasinski, Aug 26 2020

Keywords

Comments

For the decimal expansion of the imaginary part of Sum_{m>=1} 1/(1/2 + i*z(m))^4 where z(m) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function see A337365.
See also links in A332645.

Examples

			0.0000368136106308...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0, 0},RealDigits[N[1/192 (96 + 96 EulerGamma^4 - Pi^4 + 384 EulerGamma^2 StieltjesGamma[1] + 192 StieltjesGamma[1]^2 + 192 EulerGamma StieltjesGamma[2] + 64 StieltjesGamma[3]),105]][[1]]]

Formula

Re(Sum_{m>=1} 1/(1/2 + i*z(m))^n) where n is a positive integer is equal to Keiper's sigma(n)/2.
For n=4 this equals 1/2 + EulerGamma^4/2 - Pi^4/192 + 2*EulerGamma^2*StieltjesGamma(1) + StieltjesGamma(1)^2 + EulerGamma*StieltjesGamma(2) + StieltjesGamma(3)/3.

A335918 Decimal expansion of Sum_{m>=1} 1/(1/4 + z(m)^2)^2 where z(m) is the imaginary part of the m-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 0, 3, 7, 1, 0, 0, 6, 3, 6, 4, 3, 7, 4, 6, 4, 8, 7, 1, 5, 1, 2, 5, 0, 5, 4, 3, 3, 9, 1, 3, 2, 7, 9, 7, 1, 3, 5, 9, 6, 2, 9, 1, 9, 7, 9, 9, 5, 6, 5, 2, 8, 7, 0, 1, 9, 3, 5, 6, 9, 0, 9, 1, 7, 9, 0, 0, 0, 3, 6, 7, 0, 3, 7, 8, 2, 2, 0, 4, 4, 7, 1, 4, 6, 4, 8, 7, 5, 7, 0, 0, 6, 2, 8, 5, 8, 5, 8, 4, 5, 5, 0, 0, 5, 8, 4, 8
Offset: 0

Views

Author

Artur Jasinski, Jun 29 2020

Keywords

Comments

Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.

Examples

			0.0000371006364374648715125054339132797135962919799565287...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0, 0},RealDigits[N[3 + EulerGamma + EulerGamma^2 - Pi^2/8 - Log[4 Pi] + 2 StieltjesGamma[1], 105]][[1]]]

Formula

Equals: 3 + gamma + gamma^2 - Pi^2/8 - log(4*Pi) + 2*gamma(1), where gamma is the Euler-Mascheroni gamma constant (see A001620) and gamma(1) is 1st Stieltjes constant (see A082633).

A356693 Decimal expansion of the constant B(2) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 2, 4, 8, 3, 3, 4, 0, 5, 3, 7, 8, 9, 1, 4, 4, 1, 7, 5, 7, 2, 3, 8, 5, 6, 4, 4, 5, 2, 0, 8, 8, 1, 7, 7, 2, 6, 2, 0, 1, 4, 7, 6, 4, 7, 2, 5, 9, 8, 0, 2, 0, 3, 0, 7, 3, 3, 8, 1, 5, 4, 5, 2, 6, 0, 6, 7, 4, 9, 8, 3, 3, 2, 5, 1, 8, 3, 1, 4, 9, 0, 4, 6, 9, 7, 9, 2, 4, 0, 4, 8, 3, 7, 2, 0, 2, 3, 1, 7, 1, 9, 8, 2, 2, 2, 8, 7, 6, 5, 6, 9, 1, 7, 4, 5, 9
Offset: 0

Views

Author

Artur Jasinski, Aug 23 2022

Keywords

Examples

			0.000248334053789144...
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0}, RealDigits[N[-4*Catalan + Catalan^2/2 - Pi^2/2 + (Catalan*Pi^2)/8 + Pi^4/128 + (1/64)*Zeta[4, 1/4] + (2*Zeta'[1/2]^2)/Zeta[1/2]^2 - (Catalan Zeta'[1/2]^2)/(2 Zeta[1/2]^2) - (Pi^2 Zeta'[1/2]^2)/(16*Zeta[1/2]^2) - Zeta'[1/2]^4/(8*Zeta[1/2]^4) - (2 Zeta''[1/2])/Zeta[1/2] + (Catalan Zeta''[1/2])/(2 Zeta[1/2]) + (Pi^2 Zeta''[1/2])/(16*Zeta[1/2]) + Zeta'[1/2]^2*Zeta''[1/2]/(4 Zeta[1/2]^3) - Zeta'[1/2] Zeta'''[1/2]/(6 Zeta[1/2]^2) + Zeta''''[1/2]/(24  Zeta[1/2]), 115]][[1]]]

Formula

Equals (A332645^2 - A335815)/2.
Showing 1-8 of 8 results.