cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332646 Numbers m with a divisor d such that d^tau(d) = m.

Original entry on oeis.org

1, 4, 9, 25, 49, 64, 121, 169, 289, 361, 529, 729, 841, 961, 1296, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4096, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10000, 10201, 10609, 11449, 11881, 12769, 15625, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569
Offset: 1

Views

Author

Jaroslav Krizek, Feb 18 2020

Keywords

Comments

Possible values for function n^tau(n) (A062758).
Supersequence of A189991 (numbers with prime factorization p^4*q^4; d = pq), A001248 (numbers with prime factorization p^2; d = p), A030516 (numbers with prime factorization p^6; d = p^2) and A280076.

Examples

			64 is a term because 4^3 = 64; 4 divides 64; tau(4) = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | #[d: d in Divisors(n) | d^NumberOfDivisors(d) eq n] ge 1];
    
  • Mathematica
    divPowerQ[n_] := AnyTrue[Divisors[n], #^DivisorSigma[0, #] == n &]; Select[Range[27000], divPowerQ] (* Amiram Eldar, Feb 18 2020 *)
  • PARI
    isok(m) = fordiv(m, d, if (d^numdiv(d) == m, return (1))); \\ Michel Marcus, Feb 18 2020