cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A332667 Permutation of N = {0, 1, 2, ...} induced by the enumeration of N X N in A332662.

Original entry on oeis.org

0, 1, 2, 4, 5, 3, 10, 11, 6, 7, 20, 21, 12, 13, 8, 35, 36, 22, 23, 14, 9, 56, 57, 37, 38, 24, 15, 16, 84, 85, 58, 59, 39, 25, 26, 17, 120, 121, 86, 87, 60, 40, 41, 27, 18, 165, 166, 122, 123, 88, 61, 62, 42, 28, 19, 220, 221, 167, 168, 124, 89, 90, 63, 43, 29, 30
Offset: 0

Views

Author

Peter Luschny, Feb 19 2020

Keywords

Comments

Motivated by the question how a sequence of regular integer triangles can be stored in linear memory (see A332662).

Examples

			a(n) can be seen as the triangle read by rows:
[0]  0;
[1]  1,  2;
[2]  4,  5,  3;
[3] 10, 11,  6,  7;
[4] 20, 21, 12, 13, 8;
[5] 35, 36, 22, 23, 14, 9;
[6] 56, 57, 37, 38, 24, 15, 16;
[7] 84, 85, 58, 59, 39, 25, 26, 17;
...
a(n) can also be seen as the rectangular array read by upwards antidiagonals (with flat rows):
(A) [ 0], [ 2,  3], [ 7,  8,  9], [16, 17, 18, 19], [30, 31, 32, 33, 34],...
(B) [ 1], [ 5,  6], [13, 14, 15], [26, 27, 28, 29], ...
(C) [ 4], [11, 12], [23, 24, 25], ...
(D) [10], [21, 22], ...
(E) [20], ...
...
		

Crossrefs

Cf. A332662, A000292 (first column), A332699 (main diagonal).

Programs

  • Maple
    F := L -> ListTools:-Flatten(L): b := n -> floor((sqrt(8*n+1)-1)/2):
    S := (n, k) -> [seq(binomial(n+k+2,3) + binomial(k+1,2)+j, j=0..k)]:
    A332667 := (n, k) -> F([seq(S(n-k,j), j=0..b(k))])[k+1]:
    seq(seq(A332667(n, k), k=0..n), n=0..10);

A332663 Even bisection of A332662: the x-coordinates of an enumeration of N X N.

Original entry on oeis.org

0, 0, 1, 2, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
Offset: 0

Views

Author

Peter Luschny, Feb 19 2020

Keywords

Crossrefs

Cf. A332662, A002260, A014370, A000292 (positions of 0).

Programs

A332699 First row of A332662, also main diagonal of A332667.

Original entry on oeis.org

0, 2, 3, 7, 8, 9, 16, 17, 18, 19, 30, 31, 32, 33, 34, 50, 51, 52, 53, 54, 55, 77, 78, 79, 80, 81, 82, 83, 112, 113, 114, 115, 116, 117, 118, 119, 156, 157, 158, 159, 160, 161, 162, 163, 164, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 275, 276, 277, 278
Offset: 0

Views

Author

Peter Luschny, Feb 25 2020

Keywords

Crossrefs

Programs

  • Maple
    a := n -> A332667(n, n): seq(a(n), n=0..58);

A056559 Tetrahedron with T(t,n,k) = t - n; succession of growing finite triangles with declining values per row.

Original entry on oeis.org

0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2000

Keywords

Examples

			First triangle: [0]; second triangle: [1; 0 0]; third triangle: [2; 1 1; 0 0 0]; ...
		

Crossrefs

Together with A056558 and A056560 might enable reading "by antidiagonals" of cube arrays as 3-dimensional analog of A002262 and A025581 with square arrays.
Bisection (y-coordinates) of A332662.

Programs

  • Julia
    function a_list(N)
        a = Int[]
        for n in 1:N
            for j in ((k:-1:1) for k in 1:n)
                t = n - j[1]
                for m in j
                    push!(a, t)
    end end end; a end
    A = a_list(10) # Peter Luschny, Feb 19 2020
    
  • Python
    from math import isqrt, comb
    from sympy import integer_nthroot
    def A056559(n): return (m:=integer_nthroot(6*(n+1),3)[0])-(a:=nChai Wah Wu, Dec 11 2024

Formula

a(n) = A056556(n) - A056557(n).

A331987 a(n) = ((n + 1) - 9*(n + 1)^2 + 8*(n + 1)^3)/6.

Original entry on oeis.org

0, 5, 23, 62, 130, 235, 385, 588, 852, 1185, 1595, 2090, 2678, 3367, 4165, 5080, 6120, 7293, 8607, 10070, 11690, 13475, 15433, 17572, 19900, 22425, 25155, 28098, 31262, 34655, 38285, 42160, 46288, 50677, 55335, 60270, 65490, 71003, 76817, 82940, 89380, 96145
Offset: 0

Views

Author

Peter Luschny, Feb 19 2020

Keywords

Comments

The start values of the partial rows on the main diagonal of A332662 in the representation in the example section.
Apparently the sum of the hook lengths over the partitions of 2*n + 1 with exactly 2 parts (cf. A180681).

Crossrefs

Apparently a bisection of A049779 and of A024862.

Programs

  • Magma
    [n*(n+1)*(8*n+7)/6: n in [0..50]]; // G. C. Greubel, Apr 19 2023
    
  • Maple
    a := n -> ((n+1) - 9*(n+1)^2 + 8*(n+1)^3)/6: seq(a(n), n=0..41);
    gf := (x*(3*x + 5))/(x - 1)^4: ser := series(gf, x, 44):
    seq(coeff(ser, x, n), n=0..41);
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {0,5,23,62}, 42]
    Table[(n-9n^2+8n^3)/6,{n,50}] (* Harvey P. Dale, Apr 11 2024 *)
  • SageMath
    def A331987(n): return n*(n+1)*(8*n+7)/6
    [A331987(n) for n in range(51)] # G. C. Greubel, Apr 19 2023

Formula

a(n) = [x^n] (x*(5 + 3*x)/(1 - x)^4).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2).
From G. C. Greubel, Apr 19 2023: (Start)
a(n) = 3*binomial(n+1,1) - 11*binomial(n+2,2) + 8*binomial(n+3,3).
a(n) = n*binomial(8*n+8,2)/24.
a(n) = n*(n+1)*(8*n+7)/6.
E.g.f.: (1/6)*x*(30 + 39*x + 8*x^2)*exp(x). (End)

A332698 a(n) = (8*n^3 + 15*n^2 + 13*n)/6.

Original entry on oeis.org

0, 6, 25, 65, 134, 240, 391, 595, 860, 1194, 1605, 2101, 2690, 3380, 4179, 5095, 6136, 7310, 8625, 10089, 11710, 13496, 15455, 17595, 19924, 22450, 25181, 28125, 31290, 34684, 38315, 42191, 46320, 50710, 55369, 60305, 65526, 71040, 76855, 82979, 89420, 96186
Offset: 0

Views

Author

Peter Luschny, Feb 20 2020

Keywords

Comments

The end values of the partial rows on the main diagonal of A332662 in the representation in the example section.

Crossrefs

Programs

  • Maple
    a := n -> (8*n^3 + 15*n^2 + 13*n)/6: seq(a(n), n=0..41);
    gf := (x*(x^2 + x + 6))/(x - 1)^4: ser := series(gf, x, 44):
    seq(coeff(ser, x, n), n=0..41);
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {0, 6, 25, 65}, 42]
    Table[(8n^3+15n^2+13n)/6,{n,0,50}] (* Harvey P. Dale, Sep 13 2024 *)

Formula

a(n) = [x^n] (x*(x^2 + x + 6))/(x - 1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2) + binomial(n, 1) = A331987(n) + n.
Showing 1-6 of 6 results.