cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332682 a(n) = Sum_{k=1..n} (-1)^(k+1) * ceiling(n/k).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 5, 6, 5, 7, 8, 9, 8, 9, 10, 13, 11, 12, 13, 14, 13, 16, 17, 18, 15, 17, 18, 21, 20, 21, 22, 23, 20, 23, 24, 27, 25, 26, 27, 30, 27, 28, 29, 30, 29, 34, 35, 36, 31, 33, 34, 37, 36, 37, 38, 41, 38, 41, 42, 43, 40, 41, 42, 47, 43, 46, 47, 48, 47, 50
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2020

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add((-1)^(k+1)*ceil(n/k),k=1..n) end proc:
    map(f, [$1..100]); # Robert Israel, Nov 25 2024
  • Mathematica
    Table[Sum[(-1)^(k + 1) Ceiling[n/k], {k, 1, n}], {n, 1, 70}]
    nmax = 70; CoefficientList[Series[(x/(1 - x)) (1 + Sum[x^k/(1 + x^k), {k, 2, nmax}]), {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*ceil(n/k)); \\ Michel Marcus, Feb 21 2020

Formula

G.f.: (x/(1 - x)) * (1 + Sum_{k>=2} x^k / (1 + x^k)).
G.f.: (x/(1 - x)) * (1 + Sum_{k>=1} (-1)^(k+1) * x^(2*k) / (1 - x^k)).
a(n) = (n mod 2) + Sum_{k=1..n-1} A048272(k).
a(n) = 1 + Sum_{k<=n-1} A325937(k). - Robert Israel, Nov 25 2024