cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332679 a(n) = (-1)^n * n! * Laguerre(n, 4*n).

Original entry on oeis.org

1, 3, 34, 642, 16920, 571880, 23577552, 1147008912, 64304389504, 4081584090240, 289302692908800, 22648001532831488, 1940655970832219136, 180654087647513945088, 18153823412468554639360, 1958590905998560664832000, 225799980396482832660529152, 27702168947661388727726931968
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 19 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n*n!*LaguerreL[n, 4*n], {n, 0, 20}]
    Join[{1}, Table[n! * Sum[(-1)^(n-k) * Binomial[n, k] * (4*n)^k/k!, {k, 0, n}], {n, 1, 20}]]
    Table[(-1)^n*n!*Hypergeometric1F1[-n, 1, 4*n], {n, 0, 20}]
  • PARI
    a(n) = (-1)^n*n!*pollaguerre(n, 0, 4*n); \\ Michel Marcus, Feb 05 2021

Formula

A302112(n) = (a(n) - 2*n*A332680(n)) * binomial(2*n, n) / 2^n.
a(n) / (n*A332680(n)) ~ 2.
a(n) ~ c * n^(n + 1/6) * exp(n), where c = Gamma(1/3) / (2^(5/6) * 3^(1/6) * sqrt(Pi)) = 0.706332637459...

A332693 a(n) = n! * Laguerre(n, 3*n).

Original entry on oeis.org

1, -2, 14, -156, 2328, -42630, 902736, -20961864, 497925504, -10347816906, 54902188800, 15803663268492, -1741565563831296, 146556727320337074, -11551833579195721728, 901051402625901468000, -71007771313742983888896, 5701873713553516375488366, -467924697090124685492944896
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * LaguerreL[n, 3*n], {n, 0, 25}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^k * 3^k * n^k / k!, {k, 0, n}], {n, 1, 25}]}]
    Table[n! * Hypergeometric1F1[-n, 1, 3*n], {n, 0, 25}]
  • PARI
    a(n) = n!*pollaguerre(n, 0, 3*n); \\ Michel Marcus, Feb 05 2021

A332694 a(n) = (-1)^n * n! * Laguerre(n, 5*n).

Original entry on oeis.org

1, 4, 62, 1614, 58904, 2764880, 158631120, 10755909010, 841471425920, 74605812325020, 7392555309228800, 809594650092540950, 97103822900059929600, 12659189667284189060200, 1782335176686080469555200, 269524635118213823349788250, 43567606796796836119605248000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 20 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n * n! * LaguerreL[n, 5*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^(n-k) * 5^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
    Table[(-1)^n * n! * Hypergeometric1F1[-n, 1, 5*n], {n, 0, 20}]
  • PARI
    a(n) = (-1)^n*n!*pollaguerre(n, 0, 5*n); \\ Michel Marcus, Feb 05 2021

Formula

a(n) ~ exp((3-sqrt(5))*n/2) * ((sqrt(5) + 1)/2)^(2*n+1) * n^n / 5^(1/4). - Vaclav Kotesovec, Feb 20 2020, simplified May 09 2021

A332695 a(n) = (-1)^n * n! * Laguerre(n, 6*n).

Original entry on oeis.org

1, 5, 98, 3234, 149784, 8927880, 650696400, 56061791856, 5574017768832, 628158472212096, 79123082415148800, 11015976349601752320, 1679832851707998600192, 278440504042352431942656, 49846084962712218734045184, 9584526091509128369970432000, 1970059291620925696814892810240
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 20 2020

Keywords

Comments

For m > 4, (-1)^n * n! * Laguerre(n, m*n) ~ sqrt(1/2 + (m-2)/(2*sqrt(m*(m-4)))) * exp((m - 2 - sqrt(m*(m-4)))*n/2) * ((m - 2 + sqrt(m*(m-4)))/2)^n * n^n.

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n * n! * LaguerreL[n, 6*n], {n, 0, 20}]
    Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^(n-k) * 6^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
    Table[(-1)^n * n! * Hypergeometric1F1[-n, 1, 6*n], {n, 0, 20}]
  • PARI
    a(n) = (-1)^n*n!*pollaguerre(n, 0, 6*n); \\ Michel Marcus, Feb 05 2021

Formula

a(n) ~ sqrt(1/2 + 1/sqrt(3)) * 2^n * exp((2-sqrt(3))*n) * ((1 + sqrt(3))/2)^(2*n) * n^n.
Showing 1-4 of 4 results.