A302112
Number of forests with 2n nodes and n labeled trees. Also number of forests with exactly n edges on 2n labeled nodes.
Original entry on oeis.org
1, 1, 15, 435, 18865, 1092105, 79170399, 6899167275, 702495121185, 81857181636945, 10742799174110575, 1568060617808784099, 251983549987815976785, 44207398164005846558425, 8407483858740005340602175, 1722961754698440157865926875, 378507890849998531093971032385
Offset: 0
-
T:= proc(n, m) option remember; `if`(n<0, 0, `if`(n=m, 1,
`if`(m<1 or m>n, 0, add(binomial(n-1, j-1)*j^(j-2)*
T(n-j, m-1), j=1..n-m+1))))
end:
a:= n-> T(2*n, n):
seq(a(n), n=0..20);
-
Flatten[{1, Table[Sum[(-1)^k * Binomial[n, k] * Binomial[2*n - 1, n - k] * 2^(n - 2*k) * n^(n - k) * (n + k)!, {k, 0, n} ] / n!, {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 19 2019 *)
Table[(-1)^n * HypergeometricPFQ[{1 - 2*n, -n}, {1, -2*n}, 4*n] * (2*n)! / (n!*2^n), {n, 0, 20}] (* Vaclav Kotesovec, Jul 19 2019 *)
Table[(-1)^n * 2^n * Gamma[n + 1/2] * (2*n*Hypergeometric1F1[1 - n, 2, 4*n] + LaguerreL[n, 4*n]) / Sqrt[Pi], {n, 0, 20}] (* Vaclav Kotesovec, Feb 19 2020 *)
A277418
a(n) = n!*LaguerreL(n, -4*n).
Original entry on oeis.org
1, 5, 98, 3246, 151064, 9052120, 663449040, 57490690544, 5749754436992, 651830574374784, 82599621627948800, 11569798584488362240, 1775052172071446510592, 296026752508667034942464, 53320241823337034415908864, 10315767337287172256717568000
Offset: 0
-
[Factorial(n)*(&+[Binomial(n,k)*4^k*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 15 2018
-
Table[n!*LaguerreL[n, -4*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * 4^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
for(n=0, 30, print1(n!*sum(k=0, n, binomial(n,k)*4^k*n^k/k!), ", ")) \\ G. C. Greubel, May 15 2018
A295408
a(n) = n! * Laguerre(n, 4*n, -n).
Original entry on oeis.org
1, 6, 134, 5052, 267576, 18246850, 1521907056, 150077897088, 17080661438336, 2203559337858174, 317761804144896000, 50650336389453807556, 8843008543955452118016, 1678231571506037926192698, 343989152383931539269349376, 75733086648535784012234565000
Offset: 0
-
[Factorial(n)*(&+[Binomial(5*n,n-k)*n^k/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 06 2018
-
Table[n!*LaguerreL[n,4*n,-n],{n,0,15}]
Join[{1},Table[n!*Sum[Binomial[5*n,n-k]*n^k/k!,{k,0,n}],{n,1,15}]]
-
for(n=0,30, print1(n!*sum(k=0, n, binomial(5*n,n-k)*n^k/k!), ", ")) \\ G. C. Greubel, Feb 06 2018
-
a(n) = n!*pollaguerre(n, 4*n, -n); \\ Michel Marcus, Feb 05 2021
A332692
a(n) = n! * Laguerre(n, 2*n).
Original entry on oeis.org
1, -1, 2, 6, -232, 4120, -61488, 740432, -3220096, -224705664, 11713068800, -397487915264, 10466018491392, -176186211195904, -2178925657151488, 399827849856768000, -24748326426744881152, 1112888620945558700032, -36293785214959525625856, 408738923015995616067584
Offset: 0
-
Table[n! * LaguerreL[n, 2*n], {n, 0, 25}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^k * 2^k * n^k / k!, {k, 0, n}], {n, 1, 25}]}]
Table[n! * Hypergeometric1F1[-n, 1, 2*n], {n, 0, 25}]
-
a(n) = n!*pollaguerre(n, 0, 2*n); \\ Michel Marcus, Feb 05 2021
A332693
a(n) = n! * Laguerre(n, 3*n).
Original entry on oeis.org
1, -2, 14, -156, 2328, -42630, 902736, -20961864, 497925504, -10347816906, 54902188800, 15803663268492, -1741565563831296, 146556727320337074, -11551833579195721728, 901051402625901468000, -71007771313742983888896, 5701873713553516375488366, -467924697090124685492944896
Offset: 0
-
Table[n! * LaguerreL[n, 3*n], {n, 0, 25}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^k * 3^k * n^k / k!, {k, 0, n}], {n, 1, 25}]}]
Table[n! * Hypergeometric1F1[-n, 1, 3*n], {n, 0, 25}]
-
a(n) = n!*pollaguerre(n, 0, 3*n); \\ Michel Marcus, Feb 05 2021
A332694
a(n) = (-1)^n * n! * Laguerre(n, 5*n).
Original entry on oeis.org
1, 4, 62, 1614, 58904, 2764880, 158631120, 10755909010, 841471425920, 74605812325020, 7392555309228800, 809594650092540950, 97103822900059929600, 12659189667284189060200, 1782335176686080469555200, 269524635118213823349788250, 43567606796796836119605248000
Offset: 0
-
Table[(-1)^n * n! * LaguerreL[n, 5*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^(n-k) * 5^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
Table[(-1)^n * n! * Hypergeometric1F1[-n, 1, 5*n], {n, 0, 20}]
-
a(n) = (-1)^n*n!*pollaguerre(n, 0, 5*n); \\ Michel Marcus, Feb 05 2021
A332695
a(n) = (-1)^n * n! * Laguerre(n, 6*n).
Original entry on oeis.org
1, 5, 98, 3234, 149784, 8927880, 650696400, 56061791856, 5574017768832, 628158472212096, 79123082415148800, 11015976349601752320, 1679832851707998600192, 278440504042352431942656, 49846084962712218734045184, 9584526091509128369970432000, 1970059291620925696814892810240
Offset: 0
-
Table[(-1)^n * n! * LaguerreL[n, 6*n], {n, 0, 20}]
Flatten[{1, Table[n!*Sum[Binomial[n, k] * (-1)^(n-k) * 6^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
Table[(-1)^n * n! * Hypergeometric1F1[-n, 1, 6*n], {n, 0, 20}]
-
a(n) = (-1)^n*n!*pollaguerre(n, 0, 6*n); \\ Michel Marcus, Feb 05 2021
A332680
a(n) = -(-1)^n * n! * hypergeometric1F1(1 - n, 2, 4*n).
Original entry on oeis.org
-1, 1, 6, 78, 1576, 43320, 1507824, 63549808, 3145681536, 178865283456, 11488065875200, 822528662774016, 64957295774721024, 5609010346397166592, 525718830294548330496, 53154054477553828608000, 5766597997397483718344704, 668177890990349738366042112, 82355042760252520538828242944
Offset: 0
-
Table[-(-1)^n * n! * Hypergeometric1F1[1 - n, 2, 4*n], {n, 0, 20}]
Join[{-1}, Table[n! * Sum[(-1)^(n-k+1) * Binomial[n-1, k] * (4*n)^k / (k+1)!, {k, 0, n-1}], {n, 1, 20}]]
Showing 1-8 of 8 results.
Comments