cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238414 Triangle read by rows: T(n,k) is the number of trees with n vertices having maximum vertex degree k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 5, 3, 1, 1, 0, 0, 1, 10, 7, 3, 1, 1, 0, 0, 1, 17, 17, 7, 3, 1, 1, 0, 0, 1, 36, 38, 19, 7, 3, 1, 1, 0, 0, 1, 65, 93, 45, 19, 7, 3, 1, 1, 0, 0, 1, 134, 220, 118, 47, 19, 7, 3, 1, 1, 0, 0, 1, 264, 537, 296, 125, 47, 19, 7, 3, 1, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 05 2014

Keywords

Comments

Sum of entries in row n is A000055(n) (= number of trees with n vertices).
The author knows of no formula for T(n,k). The entries have been obtained in the following manner, explained for row n = 7. In A235111 we find that the 11 (= A000055(7)) trees with 7 vertices have M-indices 25, 27, 30, 35, 36, 40, 42, 48, 49, 56, and 64 (the M-index of a tree t is the smallest of the Matula numbers of the rooted trees isomorphic, as a tree, to t). Making use of the formula in A196046, from these Matula numbers one obtains the maximum vertex degrees: 2, 3, 3, 3, 4, 4, 3, 5, 3, 4, 6; the frequencies of 2,3,4,5,6 are 1, 5, 3, 1, 1, respectively. See the Maple program.
This sequence may be derived from A144528 which can be efficiently computed in the same manner as A000055. - Andrew Howroyd, Dec 17 2020

Examples

			Row n=4 is T(4,2)=1,T(4,3)=1; indeed, the maximum vertex degree in the path P[4] is 2, while in the star S[4] it is 3.
Triangle starts:
  1;
  0, 1;
  0, 0, 1;
  0, 0, 1,  1;
  0, 0, 1,  1,  1;
  0, 0, 1,  3,  1, 1;
  0, 0, 1,  5,  3, 1, 1;
  0, 0, 1, 10,  7, 3, 1, 1;
  0, 0, 1, 17, 17, 7, 3, 1, 1;
  ...
		

Crossrefs

Row sums are A000055.
Cf. A144528, A196046, A235111, A332760 (connected graphs), A339788 (forests).

Programs

  • Maple
    MI := [25, 27, 30, 35, 36, 40, 42, 48, 49, 56, 64]: with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then max(a(pi(n)), 1+bigomega(pi(n))) else max(a(r(n)), a(s(n)), bigomega(r(n))+bigomega(s(n))) end if end proc: g := add(x^a(MI[j]), j = 1 .. nops(MI)): seq(coeff(g, x, q), q = 2 .. 6);
  • PARI
    \\ Here V(n, k) gives column k of A144528.
    MSet(p,k)={my(n=serprec(p,x)-1); if(min(k,n)<1, 1 + O(x*x^n), polcoef(exp( sum(i=1, min(k,n), (y^i + O(y*y^k))*subst(p + O(x*x^(n\i)), x, x^i)/i ))/(1-y + O(y*y^k)), k, y))}
    V(n,k)={my(g=1+O(x)); for(n=2, n, g=x*MSet(g, k-1)); Vec(1 + x*MSet(g, k) + (subst(g, x, x^2) - g^2)/2)}
    M(n, m=n)={my(v=vector(m, k, V(n,k-1)[2..1+n]~)); Mat(vector(m, k, v[k]-if(k>1, v[k-1])))}
    { my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) } \\ Andrew Howroyd, Dec 18 2020

Formula

T(n,k) = A144528(n,k) - A144528(n, k-1) for k > 0. - Andrew Howroyd, Dec 17 2020

Extensions

Columns k=0..1 inserted by Andrew Howroyd, Dec 18 2020

A367142 Number of connected simple graphs on n unlabeled vertices without universal vertices.

Original entry on oeis.org

1, 0, 0, 0, 2, 10, 78, 697, 10073, 248734, 11441903, 994695397, 163040832612, 50170816696627, 28952985431480109, 31368326987104006472, 63938133627255371867509, 245807830666379498961633640, 1787085789384745555957516856804, 24634233851674722043622102881490796
Offset: 0

Views

Author

Andrew Howroyd, Nov 06 2023

Keywords

Comments

A universal vertex is adjacent to every other vertex.

Examples

			The a(4) = 2 graphs are P_4 (path graph) and C_4 (cycle graph).
		

Crossrefs

A002494 is the not necessarily connected case.

Programs

  • Python
    from functools import lru_cache
    from itertools import combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A367142(n):
        if n == 0: return 1
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
        @lru_cache(maxsize=None)
        def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
        return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n-b(n-1) # Chai Wah Wu, Jul 03 2024

Formula

a(n) = A001349(n) - A000088(n-1) for n > 0.
a(n) = Sum_{k=2..n-2} A332760(n,k) for n > 0.
Showing 1-2 of 2 results.