cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A367143 Number of simple graphs on n unlabeled vertices without isolated or universal vertices.

Original entry on oeis.org

1, 0, 0, 0, 3, 12, 88, 732, 10258, 249976, 11455832, 994987528, 163053176864, 50171849022768, 28953151594499584, 31368377658489837792, 63938162732587949277392, 245807862122123877567929920, 1787085853417304634682510751296, 24634234097674713300981911735051072
Offset: 0

Views

Author

Andrew Howroyd, Nov 06 2023

Keywords

Comments

An isolated vertex has degree 0 and a universal vertex has degree n-1.

Crossrefs

Programs

  • Maple
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(ceil((p[j]-1)/2)
          +add(igcd(p[k], p[j]), k=1..j-1), j=1..nops(p)))([l[], 1$n])),
           add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    a:= n-> `if`(n<2, 1-n, b(n$2, [])-2*b(n-1$2, [])):
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 06 2023
  • Mathematica
    b[n_, i_, l_] := If[n == 0 || i == 1, 1/n!*2^(Function[p, Sum[Ceiling[(p[[j]]-1)/2] + Sum[GCD[p[[k]], p[[j]]], {k, 1, j-1}], {j, 1, Length[p]}]][Join[l, Table[1, {n}]]]), Sum[b[n-i*j, i-1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]];
    a[n_] := If[n < 2, 1-n, b[n, n, {}] - 2*b[n-1, n-1, {}]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 02 2025, after Alois P. Heinz *)

Formula

a(n) = A000088(n) - 2*A000088(n-1) for n >= 2.
G.f.: x + (1 - 2*x)*B(x) where B(x) is the g.f. of A000088.
Showing 1-1 of 1 results.