A367142 Number of connected simple graphs on n unlabeled vertices without universal vertices.
1, 0, 0, 0, 2, 10, 78, 697, 10073, 248734, 11441903, 994695397, 163040832612, 50170816696627, 28952985431480109, 31368326987104006472, 63938133627255371867509, 245807830666379498961633640, 1787085789384745555957516856804, 24634233851674722043622102881490796
Offset: 0
Keywords
Examples
The a(4) = 2 graphs are P_4 (path graph) and C_4 (cycle graph).
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..87
- Wikipedia, Vertex_(graph_theory).
Programs
-
Python
from functools import lru_cache from itertools import combinations from fractions import Fraction from math import prod, gcd, factorial from sympy import mobius, divisors from sympy.utilities.iterables import partitions def A367142(n): if n == 0: return 1 @lru_cache(maxsize=None) def b(n): return int(sum(Fraction(1<
>1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) @lru_cache(maxsize=None) def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n)) return sum(mobius(n//d)*c(d) for d in divisors(n,generator=True))//n-b(n-1) # Chai Wah Wu, Jul 03 2024
Comments