A332800 Number of permutations sigma of [n] such that (sigma(k) mod sigma(k+1)) <= (sigma(k+1) mod sigma(k+2)) for 1 <= k <= n - 2.
1, 1, 2, 4, 9, 21, 44, 109, 241, 530, 1176, 3180, 6456, 14835, 34672, 81877, 179434, 479275, 977224, 2503363, 5339049, 11207391, 28379591, 82473713, 166689486, 370775384, 877910547, 2150475950, 4608590865, 12146671367, 24620749285, 64137229920, 143062854926
Offset: 0
Keywords
Examples
b(n) = sigma(n) mod sigma(n+1). In case of n = 3. | | b(1),b(2) ----+-----------+---------- 1 | [1, 2, 3] | [1, 2] * 2 | [1, 3, 2] | [1, 1] 3 | [2, 1, 3] | [0, 1] * 4 | [3, 1, 2] | [0, 1] * In case of n = 4. | | b(1),b(2),b(3) ----+--------------+--------------- 1 | [1, 2, 3, 4] | [1, 2, 3] * 2 | [1, 3, 2, 4] | [1, 1, 2] 3 | [1, 4, 3, 2] | [1, 1, 1] 4 | [2, 1, 3, 4] | [0, 1, 3] * 5 | [2, 1, 4, 3] | [0, 1, 1] 6 | [3, 1, 2, 4] | [0, 1, 2] * 7 | [4, 1, 2, 3] | [0, 1, 2] * 8 | [4, 1, 3, 2] | [0, 1, 1] 9 | [4, 2, 1, 3] | [0, 0, 1] * (strongly increasing)
Crossrefs
Cf. A022825.
Extensions
a(17)-a(20) from Alois P. Heinz, Feb 27 2020
a(21)-a(22) from Giovanni Resta, Mar 03 2020
a(23)-a(31) from Bert Dobbelaere, Mar 12 2020
a(32) from Bert Dobbelaere, Mar 15 2020
Comments