cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332809 Number of distinct integers encountered on possible paths from n to 1 when iterating the nondeterministic map k -> k - k/p, where p is any of the prime factors of k.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 6, 4, 6, 6, 7, 7, 8, 9, 10, 5, 6, 9, 10, 8, 12, 10, 11, 9, 9, 11, 10, 12, 13, 14, 15, 6, 17, 8, 18, 12, 13, 14, 15, 10, 11, 17, 18, 13, 18, 15, 16, 11, 18, 12, 14, 14, 15, 14, 16, 15, 17, 17, 18, 18, 19, 20, 20, 7, 22, 23, 24, 10, 26, 24, 25, 15, 16, 17, 21, 18, 30, 20, 21, 12, 15, 14, 15, 22, 16, 24, 25, 16
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Comments

The count includes also n itself, and the final 1 when it is distinct from n.
a(n) >= A000005(n) because all divisors of n can be found in the union of those paths. - Antti Karttunen, Apr 19 2020

Examples

			a(1): {1}, therefore a(1) = 1;
a(6): we have two alternative paths: {6, 4, 2, 1} or {6, 3, 2, 1}, with numbers [1, 2, 3, 4, 6] present, therefore a(6) = 5;
a(12): we have three alternative paths: {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, with numbers [1, 2, 3, 4, 6, 8, 12] present, therefore a(12) = 7;
a(14): we have five alternative paths: {14, 12, 8, 4, 2, 1}, {14, 12, 6, 4, 2, 1}, {14, 12, 6, 3, 2, 1}, {14, 7, 6, 4, 2, 1} or {14, 7, 6, 3, 2, 1}, with numbers [1, 2, 3, 4, 6, 7, 8, 12, 14] present in at least one of the paths, therefore a(14) = 9.
		

Crossrefs

Cf. A064097, A332810, A333123, A334230, A334231, A333786 (first occurrence of each n), A334112.
Partial sums of A332902.
See A332904 for the sum.

Programs

  • Mathematica
    a[n_] := Block[{lst = {{n}}}, While[lst[[-1]] != {1}, lst = Join[ lst, {Union[ Flatten[# - #/(First@# & /@ FactorInteger@#) & /@ lst[[-1]]]]}]]; Length@ Union@ Flatten@ lst]; Array[a, 75] (* Robert G. Wilson v, Apr 06 2020 *)
  • PARI
    up_to = 105;
    A332809list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(length,v); }
    v332809 = A332809list(up_to);
    A332809(n) = v332809[n];
    
  • Python
    from sympy import factorint
    from functools import cache
    @cache
    def b(n): return {n}.union(*(b(n - n//p) for p in factorint(n)))
    def a(n): return len(b(n))
    print([a(n) for n in range(1, 89)]) # Michael S. Branicky, Aug 13 2022

Formula

a(p) = 1 + a(p-1) for all primes p.
a(n) = n - A332810(n).
a(n) = A334112(n) + A000005(n). - Antti Karttunen, May 09 2020