cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A332902 a(1) = 1, then after the first differences of A332809.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, -2, 2, 0, 1, 0, 1, 1, 1, -5, 1, 3, 1, -2, 4, -2, 1, -2, 0, 2, -1, 2, 1, 1, 1, -9, 11, -9, 10, -6, 1, 1, 1, -5, 1, 6, 1, -5, 5, -3, 1, -5, 7, -6, 2, 0, 1, -1, 2, -1, 2, 0, 1, 0, 1, 1, 0, -13, 15, 1, 1, -14, 16, -2, 1, -10, 1, 1, 4, -3, 12, -10, 1, -9, 3, -1, 1, 7, -6, 8, 1, -9, 1, 7, 4, -9, 8, -6, 7, -15, 1, 10
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Crossrefs

Programs

  • PARI
    up_to = 105;
    A332809list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(length,v); }
    v332809 = A332809list(up_to);
    A332809(n) = v332809[n];
    A332902(n) = if(1==n,n,(A332809(n)-A332809(n-1)));

Formula

a(1) = 1, and for n > 1, a(n) = A332809(n) - A332809(n-1).
a(p) = 1 for all primes p.

A333786 a(n) is the first occurrence of n in A332809.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 14, 15, 23, 21, 29, 30, 31, 47, 33, 35, 61, 62, 75, 65, 66, 67, 71, 69, 93, 91, 131, 77, 134, 142, 133, 105, 139, 143, 141, 265, 154, 195, 366, 201, 266, 210, 161, 209, 213, 215, 355, 217, 335, 377, 299, 315, 319, 231, 322, 403, 419, 417, 431, 585, 329, 435, 429, 497, 638, 437, 631, 795
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A332809 (a left inverse).

Programs

  • Mathematica
    a[n_] := Block[{lst = {{n}}}, While[ lst[[-1]] != {1}, lst = Join[lst, {Union[ Flatten[# - #/(First@# & /@ FactorInteger@#) & /@ lst[[-1]]]]}]]; Length@Flatten@lst]; t[] := 0; k = 1; While[k < 100001, b = a@k; If[ t[b] == 0, t[b] = k]; k++]; t@# & /@ Range@ 100 (* _Robert G. Wilson v, May 08 2020 *)
  • PARI
    search_up_to = 20000;
    A332809list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(length,v); }
    v332809 = A332809list(search_up_to);
    A332809(n) = v332809[n];
    A333786list(search_up_to) = { my(focs=Map(),t); for(n=1,search_up_to,t = A332809(n); if(!mapisdefined(focs,t),mapput(focs,t,n))); my(lista=List([]),v); for(u=1,oo,if(!mapisdefined(focs,u,&v), return(Vec(lista)), listput(lista,v))); };
    v333786 = A333786list(search_up_to);
    A333786(n) = v333786[n]; \\ Antti Karttunen, May 09 2020
    
  • Python
    from sympy import factorint
    from functools import cache
    from itertools import count, islice
    @cache
    def b(n): return {n}.union(*(b(n - n//p) for p in factorint(n)))
    def A332809(n): return len(b(n))
    def agen():
        adict, n = dict(), 1
        for k in count(1):
            v = A332809(k)
            if v not in adict: adict[v] = k
            while n in adict: yield adict[n]; n += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Aug 13 2022

Formula

A332809(a(n)) = n.

A334112 a(n) = A332809(n) - A000005(n).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 0, 3, 2, 5, 1, 6, 5, 6, 0, 4, 3, 8, 2, 8, 6, 9, 1, 6, 7, 6, 6, 11, 6, 13, 0, 13, 4, 14, 3, 11, 10, 11, 2, 9, 9, 16, 7, 12, 11, 14, 1, 15, 6, 10, 8, 13, 6, 12, 7, 13, 13, 16, 6, 17, 16, 14, 0, 18, 15, 22, 4, 22, 16, 23, 3, 14, 13, 15, 12, 26, 12, 19, 2, 10, 10, 13, 10, 12, 20, 21, 8, 15, 12, 24, 13, 23
Offset: 1

Views

Author

Antti Karttunen, May 09 2020

Keywords

Crossrefs

Cf. A000005, A000079 (positions of zeros), A007283, A332809.

Programs

  • Mathematica
    Array[Block[{w = {{#}}}, While[w[[-1]] != {1}, w = Join[w, {Union@ Flatten[# - #/FactorInteger[#][[All, 1]] & /@ w[[-1]] ]}]]; Length@ Union@ Flatten@ w - DivisorSigma[0, #]] &, 93] (* Michael De Vlieger, May 09 2020, after Robert G. Wilson v at A332809 *)
  • PARI
    up_to = 20000;
    A332809list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(length,v); }
    v332809 = A332809list(up_to);
    A332809(n) = v332809[n];
    A334112(n) = (A332809(n) - numdiv(n));

Formula

a(n) = A332809(n) - A000005(n).
a(2^n) = 0 for all n >= 0.

A333123 Consider the mapping k -> (k - (k/p)), where p is any of k's prime factors. a(n) is the number of different possible paths from n to 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 3, 5, 5, 1, 1, 5, 5, 3, 10, 5, 5, 4, 3, 7, 5, 9, 9, 12, 12, 1, 17, 2, 21, 9, 9, 14, 16, 4, 4, 28, 28, 9, 21, 14, 14, 5, 28, 7, 7, 12, 12, 14, 16, 14, 28, 23, 23, 21, 21, 33, 42, 1, 33, 47, 47, 3, 61, 56, 56, 14, 14, 23, 28, 28, 103, 42, 42, 5
Offset: 1

Views

Author

Ali Sada and Robert G. Wilson v, Mar 09 2020

Keywords

Comments

The iteration always terminates at 1, regardless of the prime factor chosen at each step.
Although there may exist multiple paths to 1, their path lengths (A064097) are the same! See A064097 for a proof. Note that this behavior does not hold if we allow any divisor of k.
First occurrence of k or 0 if no such value exists: 1, 6, 12, 24, 14, 96, 26, 85, 28, 21, 578, 30, 194, 38, 164, 39, 33, 104, 1538, 112, 35, 328, 58, 166, ..., .
Records: 1, 2, 3, 5, 10, 12, 17, 21, 28, 33, 42, 47, 61, 103, 168, ..., .
Record indices: 1, 6, 12, 14, 21, 30, 33, 35, 42, 62, 63, 66, 69, ..., .
When viewed as a graded poset, the paths of the said graph are the chains of the corresponding poset. This poset is also a lattice (see Ewan Delanoy's answer to Peter Kagey's question at the Mathematics Stack Exchange link). - Antti Karttunen, May 09 2020

Examples

			a(1): {1}, therefore a(1) = 1;
a(6): {6, 4, 2, 1} or {6, 3, 2, 1}, therefore a(6) = 2;
a(12): {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, therefore a(12) = 3;
a(14): {14, 12, 8, 4, 2, 1}, {14, 12, 6, 4, 2, 1}, {14, 12, 6, 3, 2, 1}, {14, 7, 6, 4, 2, 1} or {14, 7, 6, 3, 2, 1}, therefore a(14) = 5.
From _Antti Karttunen_, Apr 05 2020: (Start)
For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1},  {15, 12, 6, 4, 2, 1},  {15, 12, 6, 3, 2, 1}, therefore a(15) = 5. These form a graph illustrated below:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \_   |  __/|
     \__|_/   |
        4     3
         \   /
          \ /
           2
           |
           1
(End)
		

Crossrefs

Cf. A064097, A332809 (size of the lattice), A332810.
Cf. A332904 (sum of distinct integers present in such a graph/lattice), A333000 (sum over all paths), A333001, A333785.
Cf. A332992 (max. outdegree), A332999 (max. indegree), A334144 (max. rank level).
Cf. A334230, A334231 (meet and join).
Partial sums of A332903.
Cf. also tables A334111, A334184.

Programs

  • Mathematica
    a[n_] := Sum[a[n - n/p], {p, First@# & /@ FactorInteger@n}]; a[1] = 1; (* after PARI coding by Rémy Sigrist *) Array[a, 70]
    (* view the various paths *)
    f[n_] := Block[{i, j, k, p, q, mtx = {{n}}}, Label[start]; If[mtx[[1, -1]] != 1, j = Length@ mtx;  While[j > 0, k = mtx[[j, -1]]; p = First@# & /@ FactorInteger@k; q = k - k/# & /@ p; pl = Length@p; If[pl > 1, Do[mtx = Insert[mtx, mtx[[j]], j], {pl - 1}]]; i = 1;  While[i < 1 + pl, mtx[[j + i - 1]] = Join[mtx[[j + i - 1]], {q[[i]]}]; i++]; j--]; Goto[start], mtx]]
  • PARI
    for (n=1, #a=vector(80), print1 (a[n]=if (n==1, 1, vecsum(apply(p -> a[n-n/p], factor(n)[,1]~)))", ")) \\ Rémy Sigrist, Mar 11 2020

Formula

a(n) = 1 iff n is a power of two (A000079) or a Fermat Prime (A019434).
a(p) = a(p-1) if p is prime.
a(n) = Sum_{p prime and dividing n} a(n - n/p) for any n > 1. - Rémy Sigrist, Mar 11 2020

A334184 Irregular table read by rows: T(n,k) gives the number of values that can be reached after exactly k iterations of maps of the form (n - n/p) where p is a prime divisor of n. 0 <= k < A073933(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2
Offset: 1

Views

Author

Peter Kagey, Apr 17 2020

Keywords

Comments

Row lengths are given by A073933(n). Row sums are given by A332809(n). The maximum value in each row is given by A334144(n).
The n-th row consists of all 1's if and only if n is a power of two (A000079) or a Fermat prime (A019434).
Conjecture: rows are unimodal (increasing and then decreasing).
Not all rows are unimodal. Indices of rows that have terms that increase and decrease more than once are A334238. - Michael De Vlieger, Apr 18 2020

Examples

			For n = 15, the fifteenth row of this table is [1,2,3,2,1,1] because there is one value (15 itself) that can be reached with zero iterations of (n - n/p) maps, two values (10 and 12) that can be reached after one iteration, three values (5, 8, and 6) that can be reached after two iterations, and so on.
      15
     _/ \_
    /     \
  10       12
  | \_   _/ |
  |   \ /   |
  5    8    6
   \_  |  _/|
     \_|_/  |
       4    3
       |  _/
       |_/
       2
       |
       |
       1
Table begins:
1
1, 1
1, 1, 1
1, 1, 1
1, 1, 1, 1
1, 2, 1, 1
1, 1, 2, 1, 1
1, 1, 1, 1
1, 1, 2, 1, 1
1, 2, 1, 1, 1
1, 1, 2, 1, 1, 1
1, 2, 2, 1, 1
1, 1, 2, 2, 1, 1
1, 2, 2, 2, 1, 1
1, 2, 3, 2, 1, 1
1, 1, 1, 1, 1
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ Union@ # & /@ Transpose@ # &@ If[n == 1, {{1}}, NestWhile[If[Length[#] == 0, Map[{n, #} &, # - # /FactorInteger[#][[All, 1]] ], Union[Join @@ Map[Function[{w, n}, Map[Append[w, If[n == 0, 0, n - n/#]] &, FactorInteger[n][[All, 1]] ]] @@ {#, Last@ #} &, #]]] &, n, If[ListQ[#], AllTrue[#, Last[#] > 1 &], # > 1] &]], {n, 22}] // Flatten (* Michael De Vlieger, Apr 18 2020 *)

Formula

T(n,0) = T(n, A073933(n) - 2) = T(n, A073933(n) - 1) = 1.
T(n,1) = A001221(n) for n > 1.

A332904 Sum of distinct integers encountered on all possible paths from n to 1 when iterating with nondeterministic map k -> k - k/p, where p is any of the prime factors of k.

Original entry on oeis.org

1, 3, 6, 7, 12, 16, 23, 15, 25, 30, 41, 36, 49, 57, 66, 31, 48, 63, 82, 66, 105, 99, 122, 76, 91, 115, 90, 125, 154, 156, 187, 63, 222, 114, 240, 139, 176, 196, 217, 138, 179, 251, 294, 215, 264, 284, 331, 156, 300, 213, 258, 247, 300, 220, 345, 261, 334, 348, 407, 336, 397, 429, 395, 127, 492, 512, 579, 246, 650, 546, 617, 291, 364
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Examples

			a(12): we have three alternative paths: {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, with numbers [1, 2, 3, 4, 6, 8, 12] present, therefore a(12) = 1+2+3+4+6+8+12 = 36.
For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1},  {15, 12, 6, 4, 2, 1},  {15, 12, 6, 3, 2, 1}. These form a lattice illustrated below:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \__  |  __/|
      \_|_/   |
        4     3
         \   /
          \ /
           2
           |
           1,
therefore a(15) = 1+2+3+4+5+6+8+10+12+15 = 66.
		

Crossrefs

Cf. A333790 (sum of the route with minimal sum), A333794.

Programs

  • Mathematica
    Total /@ Nest[Function[{a, n}, Append[a, Union@ Flatten@ Table[Append[a[[n - n/p]], n], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{1}}, 72] (* Michael De Vlieger, Apr 15 2020 *)
  • PARI
    up_to = 20000;
    A332904list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(vecsum,v); }
    v332904 = A332904list(up_to);
    A332904(n) = v332904[n];

Formula

For all primes p, a(p) = a(p-1) + p.
For all n >= 1, A333000(n) >= a(n) >= A333794(n) >= A333790(n).

A332810 Number of integers in range 1..n that are not encountered on any of the possible paths from n to 1 when iterating with nondeterministic map k -> k - k/p, where p is any prime factor of k.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 4, 3, 4, 4, 5, 5, 5, 5, 11, 11, 9, 9, 12, 9, 12, 12, 15, 16, 15, 17, 16, 16, 16, 16, 26, 16, 26, 17, 24, 24, 24, 24, 30, 30, 25, 25, 31, 27, 31, 31, 37, 31, 38, 37, 38, 38, 40, 39, 41, 40, 41, 41, 42, 42, 42, 43, 57, 43, 43, 43, 58, 43, 46, 46, 57, 57, 57, 54, 58, 47, 58, 58, 68, 66, 68, 68, 62, 69, 62, 62, 72, 72
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Examples

			a(12): we have three alternative paths: {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, with [5, 7, 9, 10, 11] being the only numbers in range 1..12 that do not occur in any of those paths, therefore a(12) = 5.
		

Crossrefs

Programs

  • PARI
    up_to = 105;
    A332809list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(length,v); }
    v332809 = A332809list(up_to);
    A332810(n) = (n-v332809[n]);

Formula

a(n) = n - A332809(n).

A332992 Maximum outdegree in the graph formed by a subset of numbers in range 1 .. n with edge relation k -> k - k/p, where p can be any of the prime factors of k.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 1, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Comments

Maximum number of distinct prime factors of any one integer encountered on all possible paths from n to 1 when iterating with nondeterministic map k -> k - k/p, where p can be any of the prime factors of k.

Examples

			For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1},  {15, 12, 6, 4, 2, 1},  {15, 12, 6, 3, 2, 1}. These form a lattice illustrated below:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \__  |  __/|
      \_|_/   |
        4     3
         \   /
          \ /
           2
           |
           1
With edges going from 15 towards 1, the maximum outdegree is 2, which occurs at nodes 15, 12, 10 and 6, therefore a(15) = 2.
		

Crossrefs

Cf. A002110 (positions of records and the first occurrence of each n).

Programs

  • Mathematica
    With[{s = Nest[Function[{a, n}, Append[a, Join @@ Table[Flatten@ Prepend[#, n] & /@ a[[n - n/p]], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{{1}}}, 105]}, Array[If[# == 1, 0, Max@ Tally[#][[All, -1]] &@ Union[Join @@ Map[Partition[#, 2, 1] &, s[[#]] ]][[All, 1]] ] &, Length@ s]] (* Michael De Vlieger, May 02 2020 *)
  • PARI
    up_to = 105;
    A332992list(up_to) = { my(v=vector(up_to)); v[1] = 0; for(n=2,up_to, v[n] = max(omega(n),vecmax(apply(p -> v[n-n/p], factor(n)[, 1]~)))); (v); };
    v332992 = A332992list(up_to);
    A332992(n) = v332992[n];

Formula

a(n) = max(A001221(n), {Max a(n - n/p), for p prime and dividing n}).
For all odd primes p, a(p) = a(p-1).
For all n >= 0, a(A002110(n)) = n.

A334230 Triangle read by rows: T(n,k) gives the meet of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 4, 5, 1, 2, 3, 4, 4, 6, 1, 2, 3, 4, 4, 6, 7, 1, 2, 2, 4, 4, 4, 4, 8, 1, 2, 3, 4, 4, 6, 6, 4, 9, 1, 2, 2, 4, 5, 4, 4, 8, 4, 10, 1, 2, 2, 4, 5, 4, 4, 8, 4, 10, 11, 1, 2, 3, 4, 4, 6, 6, 8, 6, 8, 8, 12, 1, 2, 3, 4, 4, 6, 6, 8
Offset: 1

Views

Author

Keywords

Comments

Any row with prime index p is a copy of row p-1 followed by that prime p.

Examples

			The interval [1,15] illustrates that, for example, T(12, 10) = 8, T(12, 4) = T(5, 6) = 4, T(8, 3) = 2, etc.
      15
     _/ \_
    /     \
  10       12
  | \_   _/ |
  |   \ /   |
  5    8    6
   \_  |  _/|
     \_|_/  |
       4    3
       |  _/
       |_/
       2
       |
       |
       1
Triangle begins:
  n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14
  ---+---------------------------------
   1 | 1
   2 | 1 2
   3 | 1 2 3
   4 | 1 2 2 4
   5 | 1 2 2 4 5
   6 | 1 2 3 4 4 6
   7 | 1 2 3 4 4 6 7
   8 | 1 2 2 4 4 4 4 8
   9 | 1 2 3 4 4 6 6 4 9
  10 | 1 2 2 4 5 4 4 8 4 10
  11 | 1 2 2 4 5 4 4 8 4 10 11
  12 | 1 2 3 4 4 6 6 8 6  8  8 12
  13 | 1 2 3 4 4 6 6 8 6  8  8 12 13
  14 | 1 2 3 4 4 6 7 8 6  8  8 12 12 14
		

Crossrefs

Programs

  • PARI
    \\ This just returns the largest (in a normal sense) number x from the intersection of the set of descendants of n and k:
    up_to = 105;
    buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); }
    vdescsets = buildWdescsets(up_to);
    A334230tr(n,k) = vecmax(setintersect(vdescsets[n],vdescsets[k]));
    A334230list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334230tr(n,k))); (v); };
    v334230 = A334230list(up_to);
    A334230(n) = v334230[n]; \\ Antti Karttunen, Apr 19 2020

Formula

T(n, k) = m*T(n/m, k/m) for m = gcd(n, k).

A334231 Triangle read by rows: T(n,k) gives the join of n and k in the graded lattice of the positive integers defined by covering relations "n covers (n - n/p)" for all divisors p of n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 6, 4, 5, 5, 15, 5, 5, 6, 6, 6, 6, 15, 6, 7, 7, 7, 7, 35, 7, 7, 8, 8, 12, 8, 10, 12, 14, 8, 9, 9, 9, 9, 45, 9, 21, 18, 9, 10, 10, 15, 10, 10, 15, 35, 10, 45, 10, 11, 11, 33, 11, 11, 33, 77, 11, 99, 11, 11, 12, 12, 12, 12, 15, 12, 14, 12
Offset: 1

Views

Author

Peter Kagey, Apr 19 2020

Keywords

Comments

The poset of the positive integers is defined by covering relations "n covers (n - n/p)" for all divisors p of n.
n appears A332809(n) times in row n.

Examples

			The interval [1,15] illustrates that, for example, T(12, 10) = T(6, 5) = 15, T(12, 4) = 12, T(8, 5) = 10, T(3, 1) = 3, etc.
      15
     _/ \_
    /     \
  10       12
  | \_   _/ |
  |   \ /   |
  5    8    6
   \_  |  _/|
     \_|_/  |
       4    3
       |  _/
       |_/
       2
       |
       |
       1
Triangle begins:
  n\k|  1  2  3  4  5  6  7  8  9 10  11 12 13 14
  ---+-------------------------------------------
   1 |  1
   2 |  2  2
   3 |  3  3  3
   4 |  4  4  6  4
   5 |  5  5 15  5  5
   6 |  6  6  6  6 15  6
   7 |  7  7  7  7 35  7  7
   8 |  8  8 12  8 10 12 14  8
   9 |  9  9  9  9 45  9 21 18  9
  10 | 10 10 15 10 10 15 35 10 45 10
  11 | 11 11 33 11 11 33 77 11 99 11  11
  12 | 12 12 12 12 15 12 14 12 18 15  33 12
  13 | 13 13 13 13 65 13 91 13 39 65 143 13 13
  14 | 14 14 14 14 35 14 14 14 21 35  77 14 91 14
		

Crossrefs

Programs

  • PARI
    \\ This just returns the least (in a normal sense) number x such that both n and k are in its set of descendants:
    up_to = 105;
    buildWdescsets(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); (v); }
    vdescsets = buildWdescsets(100*up_to); \\ XXX - Think about a safe limit here!
    A334231tr(n,k) = for(i=max(n,k),oo,if(setsearch(vdescsets[i],n)&&setsearch(vdescsets[i],k),return(i)));
    A334231list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A334231tr(n,k))); (v); };
    v334231 = A334231list(up_to);
    A334231(n) = v334231[n]; \\ Antti Karttunen, Apr 19 2020

Formula

T(n,1) = T(n,n) = n. T(n, 2) = n for n >= 2.
T(x,y) <= lcm(x,y) for any x,y because x is in same chain with lcm(x,y), and y is in same chain with lcm(x,y).
Moreover, empirically it looks like T(x,y) divides lcm(x,y).
Showing 1-10 of 12 results. Next