cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332845 a(n) = (-1)^omega(n) * Sum_{k=1..n} (-1)^omega(n/gcd(n, k)), where omega = A001221.

Original entry on oeis.org

1, 0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 2, 11, 0, 3, 14, 15, 0, 17, 6, 5, 0, 21, 6, 23, 0, 25, 10, 27, 0, 29, 30, 9, 0, 15, 14, 35, 0, 11, 18, 39, 0, 41, 18, 21, 0, 45, 14, 47, 0, 15, 22, 51, 0, 27, 30, 17, 0, 57, 6, 59, 0, 35, 62, 33, 0, 65, 30, 21, 0, 69, 42, 71
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2020

Keywords

Crossrefs

Cf. A000010, A001221, A016825 (positions of 0's), A049060, A058026, A074722, A076479, A307868.

Programs

  • Mathematica
    Table[(-1)^PrimeNu[n] Sum[(-1)^PrimeNu[n/GCD[n, k]], {k, 1, n}], {n, 1, 73}]
    Table[(-1)^PrimeNu[n] Sum[(-1)^PrimeNu[d] EulerPhi[d], {d, Divisors[n]}], {n, 1, 73}]
    f[p_, e_] := p^e - 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; s = Array[a, 100] (* Amiram Eldar, Nov 01 2022 *)
  • PARI
    a(n) = (-1)^omega(n) * sum(k=1, n, (-1)^omega(n/gcd(n, k))); \\ Michel Marcus, Feb 26 2020
    
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^f[i,2] - 2); } \\ Amiram Eldar, Nov 01 2022

Formula

a(n) = (-1)^omega(n) * Sum_{d|n} (-1)^omega(d) * phi(d).
a(p) = p - 2, where p is prime.
From Amiram Eldar, Nov 01 2022: (Start)
Multiplicative with a(p^e) = p^e - 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 - 2/(p*(p+1))) = A307868 / 2 = 0.2358403068... . (End)