cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A332846 a(1) = 1; a(n+1) = Sum_{k=1..n} a(k) * ceiling(n/k).

Original entry on oeis.org

1, 1, 3, 8, 20, 50, 121, 297, 716, 1739, 4198, 10157, 24513, 59246, 143006, 345381, 833792, 2013272, 4860337, 11734717, 28329772, 68396030, 165121957, 398644144, 962410246, 2323475153, 5609360573, 13542220814, 32693802921, 78929886033, 190553574988, 460037180829, 1110627936647
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[k] Ceiling[(n - 1)/k], {k, 1, n - 1}]; Table[a[n], {n, 1, 33}]
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Sum[a[k] + Sum[a[d], {d, Divisors[k]}], {k, 1, n - 2}]; Table[a[n], {n, 1, 33}]
    terms = 33; A[] = 0; Do[A[x] = x (1 + (1/(1 - x)) (A[x] + x Sum[A[x^k], {k, 1, terms}])) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * (A(x) + x * Sum_{k>=1} A(x^k))).
a(1) = 1; a(n) = a(n-1) + Sum_{k=1..n-2} (a(k) + Sum_{d|k} a(d)).
a(n) ~ c * (1 + sqrt(2))^n, where c = 0.2594006517235012546870541901936538347053403598092060748627156661727... - Vaclav Kotesovec, Mar 10 2020