A332873 Number of non-unimodal, non-co-unimodal sequences of length n covering an initial interval of positive integers.
0, 0, 0, 0, 22, 340, 3954, 44716, 536858, 7056252, 102140970, 1622267196, 28090317226, 526854073564, 10641328363722, 230283141084220, 5315654511587498, 130370766447282204, 3385534661270087178, 92801587312544823804, 2677687796221222845802, 81124824998424994578652
Offset: 0
Keywords
Examples
The a(4) = 22 sequences: (1,2,1,2) (2,3,1,3) (1,2,1,3) (2,3,1,4) (1,3,1,2) (2,4,1,3) (1,3,2,3) (3,1,2,1) (1,3,2,4) (3,1,3,2) (1,4,2,3) (3,1,4,2) (2,1,2,1) (3,2,3,1) (2,1,3,1) (3,2,4,1) (2,1,3,2) (3,4,1,2) (2,1,4,3) (4,1,3,2) (2,3,1,2) (4,2,3,1)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Not requiring non-co-unimodality gives A328509.
Not requiring non-unimodality also gives A328509.
The version for run-lengths of partitions is A332640.
The version for unsorted prime signature is A332643.
The version for compositions is A332870.
Unimodal compositions are A001523.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Unimodal compositions covering an initial interval are A227038.
Numbers whose unsorted prime signature is not unimodal are A332282.
Numbers whose negated prime signature is not unimodal are A332642.
Compositions whose run-lengths are not unimodal are A332727.
Non-unimodal compositions covering an initial interval are A332743.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]; Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&&!unimodQ[-#]&]],{n,0,5}]
-
PARI
seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 6*x + 12*x^2 - 6*x^3)/((1 - x)*(1 - 2*x)*(1 - 4*x + 2*x^2)), -(n+1)) \\ Andrew Howroyd, Jan 28 2024
Formula
Extensions
a(9) onwards from Andrew Howroyd, Jan 28 2024
Comments