cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A332815 a(n) = A108548(A005940(1+n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 27, 16, 13, 14, 21, 20, 35, 30, 45, 24, 49, 50, 75, 36, 125, 54, 81, 32, 11, 26, 39, 28, 65, 42, 63, 40, 91, 70, 105, 60, 175, 90, 135, 48, 169, 98, 147, 100, 245, 150, 225, 72, 343, 250, 375, 108, 625, 162, 243, 64, 17, 22, 33, 52, 55, 78, 117, 56, 77, 130, 195, 84
Offset: 0

Views

Author

Antti Karttunen, Feb 28 2020

Keywords

Comments

This is variant of Doudna-sequence, A005940 and thus can be represented as a binary tree. Each child to the left is obtained by applying A332818 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 27 16
13 14 21 20 35 30 45 24 49 50 75 36 125 54 81 32
etc.
Note the indexing: the sequence starts with a(0)=1, as is natural for sequences based on maps from base-2 expansion to prime factorization. This is
in contrast to A005940, which for historical reasons starts from offset 1.
For any n > 1, A332893(n) gives the value of the parent node. For any n >= 1, A332894(n) gives the distance to 1, and A332899(n) gives the number of odd numbers that occur (inclusively) on the path from 1 to n.

Crossrefs

Cf. A332816 (inverse permutation).
Cf. A108546 (the left edge of the tree from 2 downward).

Programs

  • PARI
    up_to = 26927;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A108546list(up_to) = { my(v=vector(up_to), p,q); v[1] = 2; v[2] = 3; v[3] = 5; for(n=4,up_to, p = v[n-2]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[n] = q); (v); };
    v108546 = A108546list(up_to);
    A108546(n) = v108546[n];
    A108548(n) = { my(f=factor(n)); f[,1] = apply(A108546,apply(primepi,f[,1])); factorback(f); };
    A332815(n) = A108548(A005940(1+n));

Formula

a(n) = A108548(A005940(1+n)).

A332897 a(1) = 0, a(2) = 1, and for n > 2, a(n) = a(A332893(n)) + [n == 1 (mod 4)].

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 3, 2, 1, 1, 4, 2, 4, 2, 3, 3, 5, 1, 3, 3, 1, 2, 5, 1, 6, 1, 4, 4, 1, 2, 6, 4, 2, 2, 7, 3, 7, 3, 2, 5, 8, 1, 4, 3, 3, 3, 8, 1, 2, 2, 5, 5, 9, 1, 9, 6, 2, 1, 4, 4, 10, 4, 6, 1, 11, 2, 10, 6, 2, 4, 5, 2, 12, 2, 2, 7, 13, 3, 5, 7, 4, 3, 11, 2, 1, 5, 7, 8, 3, 1, 12, 4, 3, 3, 13, 3, 14, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 04 2020

Keywords

Comments

Starting from x=n, iterate the map x -> A332893(x) which divides even numbers by 2, and for odd n changes every 4k+1 prime in their prime factorization to 4k+3 prime and vice versa (except 3 -> 2), like in A332819. a(n) counts the numbers of the form 4k+1 encountered until 1 has been reached, which is also included in the count when n > 1. This count includes also n itself when it is of the form 4k+1 (A016813) and larger than 1.

Crossrefs

Programs

Formula

a(1) = 0, a(2) = 1, and for n > 2, a(n) = a(A332893(n)) + [n == 1 (mod 4)].
a(n) = A000120(A332895(n)).

A332898 a(1) = 0, and for n > 1, a(n) = a(A332893(n)) + [n == 3 (mod 4)].

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 0, 1, 3, 1, 2, 2, 2, 0, 3, 0, 4, 1, 1, 3, 5, 1, 0, 2, 1, 2, 4, 2, 6, 0, 2, 3, 3, 0, 5, 4, 3, 1, 6, 1, 7, 3, 1, 5, 8, 1, 0, 0, 4, 2, 7, 1, 4, 2, 3, 4, 9, 2, 8, 6, 2, 0, 1, 2, 10, 3, 4, 3, 11, 0, 9, 5, 1, 4, 1, 3, 12, 1, 0, 6, 13, 1, 2, 7, 5, 3, 10, 1, 4, 5, 5, 8, 5, 1, 11, 0, 3, 0, 12, 4, 14, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 04 2020

Keywords

Comments

Starting from x=n, iterate the map x -> A332893(x) which divides even numbers by 2, and for odd n, changes every 4k+1 prime in the prime factorization to 4k+3 prime and vice versa (except 3 --> 2), like in A332819. a(n) counts the numbers of the form 4k+3 encountered until 1 has been reached. The count includes also n itself if it is of the form 4k+3 (A004767).
In other words, locate the node which contains n in binary tree A332815 and traverse from that node towards the root, counting all numbers of the form 4k+3 that occur on the path.

Crossrefs

Cf. A028982 (positions of zeros).
Cf. also A292377.

Programs

Formula

a(1) = 0, and for n > 1, a(n) = a(A332893(n)) + [n == 3 (mod 4)].
a(n) = A000120(A332896(n)).

A332816 a(n) = A156552(A332808(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 32, 11, 16, 17, 10, 15, 64, 13, 128, 19, 18, 65, 512, 23, 12, 33, 14, 35, 256, 21, 2048, 31, 66, 129, 20, 27, 1024, 257, 34, 39, 4096, 37, 8192, 131, 22, 1025, 32768, 47, 24, 25, 130, 67, 16384, 29, 68, 71, 258, 513, 131072, 43, 65536, 4097, 38, 63, 36, 133, 524288, 259, 1026, 41, 2097152, 55, 262144, 2049, 26, 515
Offset: 1

Views

Author

Antti Karttunen, Feb 28 2020

Keywords

Crossrefs

Cf. A332815 (inverse permutation).

Programs

  • PARI
    up_to = 26927;
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332806list(up_to) = { my(v=vector(2), xs=Map(), lista=List([]), p,q,u); v[2] = 3; v[1] = 5; mapput(xs,1,1); mapput(xs,2,2); mapput(xs,3,3);  for(n=4,up_to, p = v[2-(n%2)]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[2-(n%2)] = q; mapput(xs,primepi(q),n)); for(i=1, oo, if(!mapisdefined(xs, i, &u), return(Vec(lista)), listput(lista, prime(u)))); };
    v332806 = A332806list(up_to);
    A332806(n) = v332806[n];
    A332808(n) = { my(f=factor(n)); f[,1] = apply(A332806,apply(primepi,f[,1])); factorback(f); };
    A332816(n) = A156552(A332808(n));

Formula

a(n) = A156552(A332808(n)).
For n > 1, A070939(a(n)) = A332894(n).
For n >= 1: (Start)
A080791(a(n)) = A332899(n)-1.
Among many identities given in A156552 that apply here as well we have for example the following ones:
A000120(a(n)) = A001222(n).
A069010(a(n)) = A001221(n).
A106737(a(n)) = A000005(n).
(End)

A332894 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A332819(2n+1)); also binary width of terms of A332816.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 6, 4, 5, 5, 4, 4, 7, 4, 8, 5, 5, 7, 10, 5, 4, 6, 4, 6, 9, 5, 12, 5, 7, 8, 5, 5, 11, 9, 6, 6, 13, 6, 14, 8, 5, 11, 16, 6, 5, 5, 8, 7, 15, 5, 7, 7, 9, 10, 18, 6, 17, 13, 6, 6, 6, 8, 20, 9, 11, 6, 22, 6, 19, 12, 5, 10, 7, 7, 24, 7, 5, 14, 26, 7, 8, 15, 10, 9, 21, 6, 6, 12, 13, 17, 9, 7, 23, 6, 8, 6, 25, 9, 28, 8, 6
Offset: 1

Views

Author

Antti Karttunen, Mar 04 2020

Keywords

Comments

a(n) tells how many iterations of A332893 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A332815.
Each n > 0 occurs 2^(n-1) times in total.

Crossrefs

Programs

Formula

a(n) = A252464(A332808(n)).
a(1) = 0, and for n > 1, a(n) = 1 + a(A332893(n)).
For n >= 1, a(A108546(n)) = n; for all n >= 0, a(2^n) = n.
For n > 1: (Start)
a(n) = 1 + a(n/2) if n is even, and a(n) = 1 + a(A332819(n)), if n is odd.
a(n) = A070939(A332816(n)).
a(n) >= A332899(n).
(End)

A332811 a(n) = A243071(A332808(n)).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 15, 4, 5, 14, 63, 12, 31, 30, 13, 8, 127, 10, 255, 28, 29, 126, 1023, 24, 11, 62, 9, 60, 511, 26, 4095, 16, 125, 254, 27, 20, 2047, 510, 61, 56, 8191, 58, 16383, 252, 25, 2046, 65535, 48, 23, 22, 253, 124, 32767, 18, 123, 120, 509, 1022, 262143, 52, 131071, 8190, 57, 32, 59, 250, 1048575, 508, 2045, 54, 4194303, 40, 524287, 4094, 21
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2020

Keywords

Crossrefs

Cf. A332817 (inverse permutation).
Cf. also A332215.

Programs

  • PARI
    up_to = 26927;
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A243071(n) = if(n<=2, n-1, if(!(n%2), 2*A243071(n/2), 1+(2*A243071(A064989(n)))));
    A332806list(up_to) = { my(v=vector(2), xs=Map(), lista=List([]), p,q,u); v[2] = 3; v[1] = 5; mapput(xs,1,1); mapput(xs,2,2); mapput(xs,3,3);  for(n=4,up_to, p = v[2-(n%2)]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[2-(n%2)] = q; mapput(xs,primepi(q),n)); for(i=1, oo, if(!mapisdefined(xs, i, &u), return(Vec(lista)), listput(lista, prime(u)))); };
    v332806 = A332806list(up_to);
    A332806(n) = v332806[n];
    A332808(n) = { my(f=factor(n)); f[,1] = apply(A332806,apply(primepi,f[,1])); factorback(f); };
    A332811(n) = A243071(A332808(n));

Formula

a(n) = A243071(A332808(n)).
For n > 1, a(n) = A054429(A332816(n)).
a(n) = A332895(n) + A332896(n).
a(n) = A332895(n) OR A332896(n) = A332895(n) XOR A332896(n).
A000120(a(n)) = A332899(n).
Showing 1-6 of 6 results.