A332981 Smallest semiprime m = p*q such that the sum s = p + q can be expressed as an unordered sum of two primes in exactly n ways.
4, 21, 57, 93, 183, 291, 327, 395, 501, 545, 695, 791, 815, 831, 1145, 1205, 1415, 1631, 1461, 1745, 1941, 1865, 2661, 2315, 2615, 2855, 2495, 2285, 3665, 2705, 2721, 3521, 3561, 3351, 3755, 4341, 3545, 4701, 4265, 4881, 3981, 4821, 5601, 5255, 6671, 6041, 4595
Offset: 1
Keywords
Examples
a(11) = 695 because 695 = 5*139 and the sum 5 + 139 = 144 = 5+139 = 7+137 = 13+131 = 17+127 = 31+113 = 37+107 = 41+103 = 43+101 = 47+97 = 61+83 = 71+73. There are exactly 11 decompositions of 144 into an unordered sum of two primes.
Links
- Michel Marcus, Table of n, a(n) for n = 1..501
Programs
-
Maple
with(numtheory): for n from 1 to 50 do: ii:=0: for k from 2 to 10^8 while(ii=0) do: x:=factorset(k):it:=0: if bigomega(k) = 2 then s:=x[1]+k/x[1]: for m from 1 to s/2 do: if isprime(m) and isprime(s-m) then it:=it+1: else fi: od: if it = n then ii:=1: printf(`%d, `,k): else fi: fi: od: od:
-
PARI
nbp(k) = {my(nb = 0); forprime(p=2, k\2, if (isprime(k-p), nb++););nb;} a(n) = {forcomposite(k=1, oo, if (bigomega(k)==2, my(x=factor(k)[1,1]); if (nbp(x+k/x)==n, return(k));););} \\ Michel Marcus, Apr 26 2020
Comments