cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A333784 a(n) = sigma(n) - A332994(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 0, 0, 5, 0, 9, 0, 7, 5, 0, 0, 12, 0, 15, 7, 11, 0, 21, 0, 13, 0, 21, 0, 33, 0, 0, 11, 17, 7, 36, 0, 19, 13, 35, 0, 45, 0, 33, 20, 23, 0, 45, 0, 30, 17, 39, 0, 39, 11, 49, 19, 29, 0, 89, 0, 31, 28, 0, 13, 69, 0, 51, 23, 61, 0, 84, 0, 37, 30, 57, 11, 81, 0, 75, 0, 41, 0, 121, 17, 43, 29, 77, 0, 117, 13, 69, 31
Offset: 1

Views

Author

Antti Karttunen, Apr 05 2020

Keywords

Crossrefs

Cf. A000203, A000961 (positions of zeros), A001065, A052126, A322382, A332994, A333783, A333791.

Programs

Formula

a(n) = A000203(n) - A332994(n).
a(n) = A001065(n) - A322382(n).
a(n) = A333783(n) + A333791(n).

A333791 Difference of sums of two subsets of divisors of n, those obtained by repeatedly dividing with the smallest remaining prime factor (A332993) and those obtained by repeatedly dividing with the largest remaining prime factor (A332994).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 3, 0, 5, 2, 0, 0, 4, 0, 9, 4, 9, 0, 7, 0, 11, 0, 15, 0, 12, 0, 0, 8, 15, 2, 12, 0, 17, 10, 21, 0, 20, 0, 27, 8, 21, 0, 15, 0, 18, 14, 33, 0, 13, 6, 35, 16, 27, 0, 32, 0, 29, 16, 0, 8, 36, 0, 45, 20, 30, 0, 28, 0, 35, 12, 51, 4, 44, 0, 45, 0, 39, 0, 52, 12, 41, 26, 63, 0, 39, 6, 63, 28, 45, 14, 31
Offset: 1

Views

Author

Antti Karttunen, Apr 05 2020

Keywords

Examples

			For n = 12 = 2*2*3, we obtain the A332993(12) = 22 as 12 + 12/2 + 6/2 + 3/3 = 12+6+3+1, and A332994(12) = 19 as 12 + 12/3 + 4/2 + 2/2 = 12+4+2+1, thus a(12) = 22 - 19 = 3.
		

Crossrefs

Cf. A000961 (positions of zeros), A006022, A032742, A052126, A322382, A332993, A332994, A333783, A333784.

Programs

Formula

a(n) = A332993(n) - A332994(n).
a(n) = A333784(n) - A333783(n).
a(n) = A006022(n) - A322382(n).
a(p^k) = 0, for all primes p and exponents k >= 0.

A348988 Numerator of A332994(n) / sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 13, 1, 19, 1, 17, 19, 1, 1, 9, 1, 9, 25, 25, 1, 13, 1, 29, 1, 5, 1, 13, 1, 1, 37, 37, 41, 55, 1, 41, 43, 11, 1, 17, 1, 17, 29, 49, 1, 79, 1, 21, 55, 59, 1, 27, 61, 71, 61, 61, 1, 79, 1, 65, 19, 1, 71, 25, 1, 25, 73, 83, 1, 37, 1, 77, 47, 83, 85, 29, 1, 37, 1, 85, 1, 103, 91, 89, 91, 103
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

Ratio A332994(n) / sigma(n) tells how large proportion of the divisor sum we obtain if we sum just those divisors of n that can be obtained by repeatedly dividing a single instance of the largest prime divisor out of previous such divisor (when starting from n, which is included in the sum), up to and including the terminal 1. Pair a(n) / A348989(n) shows the ratio in the lowest terms: 1/1, 1/1, 1/1, 1/1, 1/1, 3/4, 1/1, 1/1, 1/1, 13/18, 1/1, 19/28, 1/1, 17/24, 19/24, 1/1, 1/1, 9/13, 1/1, 9/14, 25/32, 25/36, 1/1, 13/20, 1/1, 29/42, 1/1, 5/8, 1/1, 13/24, 1/1, etc. The ratio is 1 for all powers of primes (A000961).

Crossrefs

Cf. A000203, A000961, A332994, A333784, A348987, A348989 (denominators).
Cf. also A348978.

Programs

  • Mathematica
    f[n_] := n/FactorInteger[n][[-1, 1]]; g[1] = 1; g[n_] := g[n] = n + g[f[n]]; a[n_] := Numerator[g[n]/DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A332994(n) = if(1==n,n,n + A332994(n/vecmax(factor(n)[,1])));
    A348988(n) = { my(u=A332994(n)); (u/gcd(sigma(n), u)); };

Formula

a(n) = A332994(n) / A348987(n) = A332994(n) / gcd(A000203(n), A332994(n)).

A348989 Denominator of A332994(n) / sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 18, 1, 28, 1, 24, 24, 1, 1, 13, 1, 14, 32, 36, 1, 20, 1, 42, 1, 8, 1, 24, 1, 1, 48, 54, 48, 91, 1, 60, 56, 18, 1, 32, 1, 28, 39, 72, 1, 124, 1, 31, 72, 98, 1, 40, 72, 120, 80, 90, 1, 168, 1, 96, 26, 1, 84, 48, 1, 42, 96, 144, 1, 65, 1, 114, 62, 140, 96, 56, 1, 62, 1, 126, 1, 224, 108, 132, 120
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

See comments in A348988.

Crossrefs

Cf. A000203, A332994, A333784, A348987, A348988 (numerators).
Cf. also A348978, A348979.

Programs

  • Mathematica
    f[n_] := n/FactorInteger[n][[-1, 1]]; g[1] = 1; g[n_] := g[n] = n + g[f[n]]; a[n_] := Denominator[g[n]/DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A332994(n) = if(1==n,n,n + A332994(n/vecmax(factor(n)[,1])));
    A348989(n) = { my(s=sigma(n)); (s/gcd(s, A332994(n))); };

Formula

a(n) = A000203(n) / A348987(n) = A000203(n) / gcd(A000203(n), A332994(n)).

A348987 a(n) = gcd(sigma(n), A332994(n)).

Original entry on oeis.org

1, 3, 4, 7, 6, 3, 8, 15, 13, 1, 12, 1, 14, 1, 1, 31, 18, 3, 20, 3, 1, 1, 24, 3, 31, 1, 40, 7, 30, 3, 32, 63, 1, 1, 1, 1, 38, 1, 1, 5, 42, 3, 44, 3, 2, 1, 48, 1, 57, 3, 1, 1, 54, 3, 1, 1, 1, 1, 60, 1, 62, 1, 4, 127, 1, 3, 68, 3, 1, 1, 72, 3, 74, 1, 2, 1, 1, 3, 80, 3, 121, 1, 84, 1, 1, 1, 1, 1, 90, 117, 1, 3, 1, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n/FactorInteger[n][[-1, 1]]; g[1] = 1; g[n_] := g[n] = n + g[f[n]]; a[n_] := GCD[g[n], DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A332994(n) = if(1==n,n,n + A332994(n/vecmax(factor(n)[,1])));
    A348987(n) = gcd(sigma(n), A332994(n));

Formula

a(n) = gcd(A000203(n), A332994(n)).
a(n) = gcd(A000203(n), A333784(n)) = gcd(A332994(n), A333784(n)).
a(n) = A332994(n) / A348988(n) = A000203(n) / A348989(n).

A332993 a(1) = 1, for n > 1, a(n) = n + a(A032742(n)).

Original entry on oeis.org

1, 3, 4, 7, 6, 10, 8, 15, 13, 16, 12, 22, 14, 22, 21, 31, 18, 31, 20, 36, 29, 34, 24, 46, 31, 40, 40, 50, 30, 51, 32, 63, 45, 52, 43, 67, 38, 58, 53, 76, 42, 71, 44, 78, 66, 70, 48, 94, 57, 81, 69, 92, 54, 94, 67, 106, 77, 88, 60, 111, 62, 94, 92, 127, 79, 111, 68, 120, 93, 113, 72, 139, 74, 112, 106, 134, 89, 131, 80, 156, 121
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Comments

Sum of those divisors of n that can be obtained by repeatedly taking the largest proper divisor (of previous such divisor, starting from n, which is included in the sum), up to and including the terminal 1.

Examples

			a(18) = 18 + 18/2 + 9/3 + 3/3 = 18 + 9 + 3 + 1 = 31.
		

Crossrefs

Programs

Formula

a(1) = 1; and for n > 1, a(n) = n + a(A032742(n)).
a(n) = n + A006022(n).
a(n) = A332994(n) + A333791(n).
a(n) = A000203(n) - A333783(n).
It seems that for all n >= 1, a(n) <= A073934(n) <= A333794(n).

A333794 a(1) = 1, for n > 1, a(n) = n + a(n-A052126(n)).

Original entry on oeis.org

1, 3, 6, 7, 12, 13, 20, 15, 22, 25, 36, 27, 40, 41, 42, 31, 48, 45, 64, 51, 66, 73, 96, 55, 76, 81, 72, 83, 112, 85, 116, 63, 118, 97, 120, 91, 128, 129, 130, 103, 144, 133, 176, 147, 136, 193, 240, 111, 182, 153, 162, 163, 216, 145, 208, 167, 202, 225, 284, 171, 232, 233, 208, 127, 236, 237, 304, 195, 306, 241, 312, 183, 256, 257
Offset: 1

Views

Author

Antti Karttunen, Apr 05 2020

Keywords

Comments

Conjecturally, also the largest path sum when iterating from n to 1 with nondeterministic map k -> k - k/p, where p is any prime factor of k.

Examples

			For n=119, the graph obtained is this:
              119
             _/\_
            /    \
          102    112
         _/|\_    | \_
       _/  |  \_  |   \_
      /    |    \ |     \
    51     68    96     56
    /|   _/ |   _/|   _/ |
   / | _/   | _/  | _/   |
  /  |/     |/    |/     |
(48) 34    64     48    28
     |\_    |    _/|   _/|
     |  \_  |  _/  | _/  |
     |    \_|_/    |/    |
    17     32     24    14
      \_    |    _/|   _/|
        \_  |  _/  | _/  |
          \_|_/    |/    |
           16      12    7
            |    _/|    _/
            |  _/  |  _/
            |_/    |_/
            8     _6
            |  __/ |
            |_/    |
            4      3
             \     /
              \_ _/
                2
                |
                1.
If we always subtract A052126(n) (i.e., n divided by its largest prime divisor), i.e., iterate with A171462 (starting from 119), we obtain 119-(119/17) = 112 -> 112-(112/7) -> 96-(96/3) -> 64-(64/2) -> 32-(32/2) -> 16-(16/2) -> 8-(8/2) -> 4-(4/2) -> 2-(2/2) -> 1, with sum 119+112+96+64+32+16+8+4+2+1 = 554, thus a(119) = 554. This happens also to be maximal sum of any path in above diagram.
		

Crossrefs

Programs

  • Mathematica
    Array[Total@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # > 1 &] &, 74] (* Michael De Vlieger, Apr 14 2020 *)
  • PARI
    A333794(n) = if(1==n,n,n + A333794(n-(n/vecmax(factor(n)[, 1]))));

Formula

a(1) = 1; and for n > 1, a(n) = n + a(A171462(n)) = n + a(n-A052126(n)).
a(n) = A073934(n) + A333793(n).
a(n) = n + Max a(n - n/p), for p prime and dividing n. [Conjectured, holds at least up to n=2^24]
For all n >= 1, A333790(n) <= a(n) <= A332904(n).
For all n >= 1, a(n) >= A332993(n). [Apparently, have to check!]

A332904 Sum of distinct integers encountered on all possible paths from n to 1 when iterating with nondeterministic map k -> k - k/p, where p is any of the prime factors of k.

Original entry on oeis.org

1, 3, 6, 7, 12, 16, 23, 15, 25, 30, 41, 36, 49, 57, 66, 31, 48, 63, 82, 66, 105, 99, 122, 76, 91, 115, 90, 125, 154, 156, 187, 63, 222, 114, 240, 139, 176, 196, 217, 138, 179, 251, 294, 215, 264, 284, 331, 156, 300, 213, 258, 247, 300, 220, 345, 261, 334, 348, 407, 336, 397, 429, 395, 127, 492, 512, 579, 246, 650, 546, 617, 291, 364
Offset: 1

Views

Author

Antti Karttunen, Apr 04 2020

Keywords

Examples

			a(12): we have three alternative paths: {12, 8, 4, 2, 1}, {12, 6, 4, 2, 1} or {12, 6, 3, 2, 1}, with numbers [1, 2, 3, 4, 6, 8, 12] present, therefore a(12) = 1+2+3+4+6+8+12 = 36.
For n=15 we have five alternative paths from 15 to 1: {15, 10, 5, 4, 2, 1}, {15, 10, 8, 4, 2, 1}, {15, 12, 8, 4, 2, 1},  {15, 12, 6, 4, 2, 1},  {15, 12, 6, 3, 2, 1}. These form a lattice illustrated below:
        15
       / \
      /   \
    10     12
    / \   / \
   /   \ /   \
  5     8     6
   \__  |  __/|
      \_|_/   |
        4     3
         \   /
          \ /
           2
           |
           1,
therefore a(15) = 1+2+3+4+5+6+8+10+12+15 = 66.
		

Crossrefs

Cf. A333790 (sum of the route with minimal sum), A333794.

Programs

  • Mathematica
    Total /@ Nest[Function[{a, n}, Append[a, Union@ Flatten@ Table[Append[a[[n - n/p]], n], {p, FactorInteger[n][[All, 1]]}]]] @@ {#, Length@ # + 1} &, {{1}}, 72] (* Michael De Vlieger, Apr 15 2020 *)
  • PARI
    up_to = 20000;
    A332904list(up_to) = { my(v=vector(up_to)); v[1] = Set([1]); for(n=2,up_to, my(f=factor(n)[, 1]~, s=Set([n])); for(i=1,#f,s = setunion(s,v[n-(n/f[i])])); v[n] = s); apply(vecsum,v); }
    v332904 = A332904list(up_to);
    A332904(n) = v332904[n];

Formula

For all primes p, a(p) = a(p-1) + p.
For all n >= 1, A333000(n) >= a(n) >= A333794(n) >= A333790(n).

A348991 a(n) = A333791(A276086(n)).

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 0, 3, 2, 12, 8, 39, 0, 18, 12, 67, 48, 214, 0, 93, 62, 342, 248, 1089, 0, 468, 312, 1717, 1248, 5464, 0, 5, 4, 20, 16, 65, 2, 30, 24, 109, 90, 346, 12, 155, 124, 554, 460, 1751, 62, 780, 624, 2779, 2310, 8776, 312, 3905, 3124, 13904, 11560, 43901, 0, 40, 32, 153, 128, 492, 16, 219, 178, 788, 664, 2495
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Cf. A060735 (gives the positions of other zeros after the initial a(0)=0).

Programs

Showing 1-9 of 9 results.