cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333011 Integers which can be written in only one way as a sum of two distinct nonzero pentagonal numbers.

Original entry on oeis.org

6, 13, 17, 23, 27, 34, 36, 40, 47, 52, 56, 57, 63, 71, 73, 75, 82, 86, 92, 93, 97, 104, 105, 114, 118, 121, 122, 127, 129, 139, 143, 146, 150, 152, 157, 162, 167, 168, 177, 180, 181, 187, 188, 196, 198, 209, 222, 227, 232, 237, 245, 246, 248, 252, 259, 261, 262
Offset: 1

Views

Author

Olivier Gérard, Mar 05 2020

Keywords

Comments

The first term of A332988 not in this sequence is 211.

Crossrefs

Programs

  • PARI
    is(k) = sum(i=1, sqrt(1+12*k)\6, sqrt(1+24*k+12*i-36*i*i)%6==5) == 1; \\ Jinyuan Wang, Mar 06 2020

A333012 Integers which can be written in exactly two ways as a sum of two distinct nonzero pentagonal numbers.

Original entry on oeis.org

211, 215, 381, 447, 602, 663, 766, 807, 853, 874, 1002, 1172, 1197, 1248, 1259, 1372, 1427, 1457, 1571, 1612, 1622, 1639, 1652, 1665, 1752, 1862, 1927, 1996, 2047, 2152, 2245, 2297, 2302, 2332, 2351, 2415, 2472, 2497, 2506, 2523, 2618, 2887, 2912, 2952
Offset: 1

Views

Author

Olivier Gérard, Mar 05 2020

Keywords

Examples

			211 = P(5) + P(11) = P(1) + P(12) = 35 + 176 = 1 + 210, where P(n) is the n-th pentagonal number A000326.
		

Crossrefs

Programs

  • PARI
    is(k) = sum(i=1, sqrt(1+12*k)\6, sqrt(1+24*k+12*i-36*i*i)%6==5) == 2; \\ Jinyuan Wang, Mar 06 2020

A333013 Integers which can be written in exactly three ways as sum of two distinct nonzero pentagonal numbers.

Original entry on oeis.org

2999, 6450, 6552, 7177, 8422, 9204, 9652, 10037, 10622, 11380, 11467, 16577, 17652, 17772, 17789, 17818, 19132, 19761, 20177, 21327, 21477, 22277, 22702, 22855, 23008, 23212, 23387, 23427, 23444, 24402, 24662, 25677, 25847, 26286, 26902, 27649, 27802, 27847, 28567, 29927
Offset: 1

Views

Author

Olivier Gérard, Mar 05 2020

Keywords

Examples

			2999 = P(24) + P(38) = P(13) + P(43) = P(9) + P(44), where P(n) is the n-th pentagonal number A000326.
		

Crossrefs

Programs

Showing 1-3 of 3 results.