A333040 Even numbers m such that sigma(m) < sigma(m-1).
46, 106, 118, 166, 226, 274, 298, 316, 346, 358, 406, 466, 514, 526, 562, 586, 622, 694, 706, 766, 778, 826, 838, 862, 886, 946, 1006, 1114, 1126, 1156, 1186, 1198, 1282, 1306, 1366, 1396, 1426, 1486, 1522, 1546, 1576, 1594, 1618, 1702, 1726, 1756
Offset: 1
Keywords
Examples
166 = 2*83 and 165 = 3*5*11, as 252 = sigma(166) < sigma(165) = 288, hence 166 is a term. 386 = 2*193 and 385 = 5*7*11, as 582 = sigma(386) > sigma(385)= 576, hence 386 is not a term. 766 = 2*383 where 383 = 19^2+19+3 and 765 = 3^2*5*13, as 1152 = sigma(766) < sigma(765) = 1404, hence 766 is a term. 1018 = 2*509 where 509 = 22^2+22+3, and 1017 = 3^2*113, as 1530 = sigma(1018) > sigma(1017) = 1482, hence 1018 is not a term.
References
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 620 pp. 82, 280, Ellipses Paris 2004.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= n -> numtheory:-sigma(n) < numtheory:-sigma(n-1): select(filter, [seq(i,i=2..2000,2)]); # Robert Israel, Mar 29 2020
-
Mathematica
Select[2 * Range[1000], DivisorSigma[1, #] < DivisorSigma[1, #-1] &] (* Amiram Eldar, Mar 24 2020 *)
-
PARI
isok(m) = !(m%2) && (sigma(m) < sigma(m-1)); \\ Michel Marcus, Mar 22 2020
Comments