cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333070 Total number of nodes summed over all lattice paths from (0,0) to (n,0) that do not go below the x-axis, and at (x,y) only allow steps (1,v) with v in {-1,0,1,...,y+1}.

Original entry on oeis.org

1, 2, 6, 16, 45, 132, 399, 1240, 3951, 12870, 42746, 144420, 495300, 1721202, 6051150, 21493136, 77039070, 278377452, 1013187920, 3711505380, 13675028346, 50649452084, 188482525039, 704409735912, 2642825539375, 9950643710800, 37587291143103, 142403408032648
Offset: 0

Views

Author

Alois P. Heinz, Mar 06 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(x=0, 1, add(
         `if`(x+j>y, b(x-1, y-j), 0), j=-1-y..min(1, y)))
        end:
    a:= n-> (n+1)*b(n, 0):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_] := b[x, y] = If[x == 0, 1, Sum[
         If[x + j > y, b[x - 1, y - j], 0], {j, -1 - y, Min[1, y]}]];
    a[n_] := (n+1) b[n, 0];
    a /@ Range[0, 30] (* Jean-François Alcover, Apr 05 2021, after Alois P. Heinz *)

Formula

a(n) = (n+1) * A333069(n).
a(n) ~ c * 4^n / sqrt(n), where c = 0.0131789402414023971902275212293294628834887666310830183578424168829... - Vaclav Kotesovec, Oct 24 2021