A333074 Least k such that Sum_{i=0..n} (-k)^i / i! is a positive integer.
1, 1, 2, 3, 4, 30, 6, 28, 120, 84, 210, 1650, 210, 11440, 6930, 630, 9240, 353430, 93450, 746130, 1616160, 746130, 1021020, 11104170, 56705880, 9722790, 48498450, 174594420, 87297210, 222071850, 2114532420, 11480905800, 5375910540, 42223261080, 5603554110, 2043061020
Offset: 0
Keywords
Programs
-
PARI
a(n) = {my(m = factorback(factorint(n)[, 1]), k = m); while(denominator(sum(i=2, n, (-k)^i/i!)) != 1, k += m); !n+k; }
-
Python
from functools import reduce from operator import mul from sympy import primefactors, factorial def A333074(n): f, g = int(factorial(n)), [] for i in range(n+1): g.append(int(f//factorial(i))) m = 1 if n < 2 else reduce(mul, primefactors(n)) k = m while True: p, ki = 0, 1 for i in range(n+1): p = (p+ki*g[i]) % f ki = (-k*ki) % f if p == 0: return k k += m # Chai Wah Wu, Apr 01 2020
Formula
a(n) <= A034386(n).
Extensions
a(27)-a(35) from Chai Wah Wu, Apr 01 2020
Comments