A333073 Least k such that Sum_{i=1..n} (-k)^i / i is a positive integer.
1, 2, 6, 6, 30, 20, 140, 140, 210, 42, 462, 462, 12012, 3432, 6006, 6006, 87516, 87516, 1108536, 3048474, 2586584, 2586584, 44618574, 44618574, 60843510, 17160990, 17160990, 14263680, 782050830, 782050830, 3806842470, 3806842470, 16830250920, 16830250920
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..60
Programs
-
PARI
a(n) = {my(m = prod(i=primepi(n/2)+1, primepi(n), prime(i)), k = m); while(denominator(sum(i=2, n, (-k)^i/i)) != 1, k += m); k; }
-
Python
from sympy import primorial, lcm def A333073(n): f = 1 for i in range(1,n+1): f = lcm(f,i) f = int(f) glist = [] for i in range(1,n+1): glist.append(f//i) m = 1 if n < 2 else primorial(n,nth=False)//primorial(n//2,nth=False) k = m while True: p,ki = 0, -k for i in range(1,n+1): p = (p+ki*glist[i-1]) % f ki = (-k*ki) % f if p == 0: return k k += m # Chai Wah Wu, Apr 02 2020
Formula
a(n) <= A034386(n).
Comments