cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333097 a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(5*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.

Original entry on oeis.org

1, 6, 76, 1101, 16876, 266881, 4305247, 70414133, 1163355884, 19369868385, 324486751951, 5462851474614, 92346622131103, 1566455916243068, 26649562889363259, 454528917186429226, 7769463895152496364, 133064720735632286722, 2282869928179537263601, 39225214245206751480102
Offset: 0

Views

Author

Peter Bala, Mar 15 2020

Keywords

Comments

The sequence satisfies the Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Examples of these congruences are given below.
More generally, for each integer m, we conjecture that the sequence a_m(n) := the n-th order Taylor polynomial of c(x)^(m*n) evaluated at x = 1 satisfies the same supercongruences. For cases see A099837 (m = -2), A100219 (m = -1), A000012 (m = 0), A333093 (m = 1), A333094 (m = 2), A333095 (m = 3), A333096 (m = 4).
In general, for m > 0 and c(x)^(m*n) is a(n) ~ m * (m+2)^((m+2)*n + 3/2) / (((m+1)*(m+2)+1) * sqrt(2*Pi*n) * (m+1)^((m+1)*n + 1/2)). - Vaclav Kotesovec, Mar 28 2020

Examples

			n-th order Taylor polynomial of c(x)^(5*n):
  n = 0: c(x)^0 = 1 + O(x)
  n = 1: c(x)^5 = 1 + 5*x + O(x^2)
  n = 2: c(x)^10 = 1 + 10*x + 65*x^2 + O(x^3)
  n = 3: c(x)^15 = 1 + 15*x + 135*x^2 + 950*x^3 + O(x^4)
  n = 4: c(x)^20 = 1 + 20*x + 230*x^2 + 2000*x^3 + 14625*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 5 = 6, a(2) = 1 + 10 + 65 = 76, a(3) = 1 + 15 + 135 + 950 = 1101 and a(4) = 1 + 20 + 230 + 2000 + 14625 = 16876.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(5*n), n >= 0, in descending powers of x begins
                                                row sums
  n = 0 |     1                                     1
  n = 1 |     5        1                            6
  n = 2 |    65       10      1                    76
  n = 3 |   950      135     15    1             1101
  n = 4 | 14625     2000    230   20    1       16876
   ...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 1566455916243068 - 6 = 2*(13^3)*104701*3404923 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11627033261887689372357353 - 1101 = (2^2)*(7^4)*19*29* 2197177609353575713 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 1034770243516278817426081673131 - 266881 = 2*3*(5^7)*31* 13305359*5351978496238483 == 0 ( mod 5^6 ).
		

Crossrefs

Programs

  • Maple
    seq(add(5*n/(5*n+k)*binomial(5*n+2*k-1,k), k = 0..n), n = 1..25);
    #alternative program
    c:= x → (1/2)*(1-sqrt(1-4*x))/x:
    G := (x,n) → series(c(x)^(5*n), x, 151):
    seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
  • Mathematica
    Join[{1}, Table[5*Binomial[7*n-1, n] * HypergeometricPFQ[{1, -6*n, -n}, {1/2 - 7*n/2, 1 - 7*n/2}, 1/4]/6, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)

Formula

a(n) = Sum_{k = 0..n} 5*n/(5*n+k)*binomial(5*n+2*k-1,k) for n >= 1.
a(n) = [x^n] ( (1 + x)*c^5(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + 5*x + 45*x^2 + 500*x^3 + 6200*x^4 + ... = (1/x)*Revert( x/c^5(x) ) is the o.g.f. of A233834.
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 5 * 7^(7*n + 3/2) / (43 * sqrt(Pi*n) * 2^(6*n + 1) * 3^(6*n + 1/2)). - Vaclav Kotesovec, Mar 28 2020
a(n) = Sum_{k = 0..n} 5*n/(5*n+2*k)*binomial(5*n+2*k, k) for n >= 1. - Peter Bala, Apr 20 2024