A333129 Product of all distinct least part primes from all partitions of n into prime parts.
1, 1, 2, 3, 2, 10, 6, 14, 6, 6, 30, 66, 30, 78, 42, 30, 30, 510, 210, 570, 210, 210, 330, 690, 2310, 210, 2730, 210, 2310, 6090, 30030, 6510, 2730, 2310, 39270, 2310, 46410, 85470, 3990, 30030, 39270, 94710, 570570, 1291290, 30030, 30030, 903210, 1411410, 746130
Offset: 0
Keywords
Examples
a(2) = 2 because [2] is the only prime partition of 2. a(5) = 10 because the prime partitions of 5 are [2,3] and [5], so the products of all distinct least part primes is 2*5 = 10.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..6269
Programs
-
Maple
b:= proc(n, p, t) option remember; `if`(n=0, 1, `if`(p>n, 0, (q-> add(b(n-p*j, q, 1), j=1..n/p)*t^p+b(n, q, t))(nextprime(p)))) end: a:= n-> (p-> mul(`if`(coeff(p, x, i)>0, i, 1), i=2..n))(b(n, 2, x)): seq(a(n), n=0..55); # Alois P. Heinz, Mar 12 2020
-
Mathematica
a[0] = 1; a[n_] := Times @@ Union[Min /@ IntegerPartitions[n, All, Prime[ Range[PrimePi[n]]]]]; a /@ Range[0, 55] (* Jean-François Alcover, Nov 01 2020 *)
Comments