cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332742 Number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 3, 2, 0, 8, 0, 3, 7, 16, 0, 24, 0, 16, 12, 4, 0, 52, 16, 5, 81, 26, 0, 54, 0, 104, 18, 6, 31, 168, 0, 7, 25, 112, 0, 99, 0, 38, 201, 8, 0, 344, 65, 132, 33, 52, 0, 612, 52, 202, 42, 9, 0, 408, 0, 10, 411, 688, 80, 162, 0, 68, 52, 272
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(n) permutations for n = 6, 8, 9, 10, 12, 14, 15, 16:
  121  132  1212  1121  1132  11121  11212  1243
       231  1221  1211  1213  11211  11221  1324
            2121        1231  12111  12112  1342
                        1312         12121  1423
                        1321         12211  1432
                        2131         21121  2143
                        2311         21211  2314
                        3121                2341
                                            2413
                                            2431
                                            3142
                                            3241
                                            3412
                                            3421
                                            4132
                                            4231
		

Crossrefs

Dominated by A318762.
The complement of the non-negated version is counted by A332294.
The non-negated version is A332672.
The complement is counted by A332741.
A less interesting version is A333146.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal 0-appended first differences are A332284.
Compositions whose negation is unimodal are A332578.
Partitions with non-unimodal negated run-lengths are A332639.
Numbers whose negated prime signature is not unimodal are A332642.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[nrmptn[n]],!unimodQ[#]&]],{n,30}]

Formula

a(n) + A332741(n) = A318762(n).

A335374 Numbers k such that the k-th composition in standard order (A066099) is not co-unimodal.

Original entry on oeis.org

13, 25, 27, 29, 41, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2020

Keywords

Comments

A sequence of integers is co-unimodal if it is the concatenation of a weakly decreasing and a weakly increasing sequence, implying that its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  41: (2,3,1)
  45: (2,1,2,1)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  81: (2,4,1)
  82: (2,3,2)
  83: (2,3,1,1)
  89: (2,1,3,1)
		

Crossrefs

This is the dual version of A335373.
The case that is not unimodal either is A335375.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[-stc[#]]&]

A333145 Number of unimodal negated permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also permutations of the multiset of prime indices of n avoiding the patterns (1,2,1), (1,3,2), and (2,3,1).
Also the number divisors of n not divisible by the least prime factor of n. The other divisors are counted by A069157. - Gus Wiseman, Apr 12 2022

Examples

			The a(n) permutations for n = 2, 6, 18, 30, 90, 162, 210, 450:
  (1)  (12)  (122)  (123)  (1223)  (12222)  (1234)  (12233)
       (21)  (212)  (213)  (2123)  (21222)  (2134)  (21233)
             (221)  (312)  (2213)  (22122)  (3124)  (22133)
                    (321)  (3122)  (22212)  (3214)  (31223)
                           (3212)  (22221)  (4123)  (32123)
                           (3221)           (4213)  (32213)
                                            (4312)  (33122)
                                            (4321)  (33212)
                                                    (33221)
		

Crossrefs

Dominated by A008480.
The complementary divisors are counted by A069157.
The non-negated version is A332288.
A more interesting version is A332741.
The complement is counted by A333146.
A001523 counts unimodal compositions.
A007052 counts unimodal normal sequences.
A028233 gives the highest power of the least prime factor, quotient A028234.
A332578 counts compositions whose negation is unimodal.
A332638 counts partitions with unimodal negated run-lengths.
A332642 lists numbers with non-unimodal negated unsorted prime signature.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],unimodQ[-#]&]],{n,30}]

Formula

a(n) + A333146(n) = A008480(n).
a(n) = A000005(A028234(n)). - Gus Wiseman, Apr 14 2022
a(n) = A000005(n) - A069157(n). - Gus Wiseman, Apr 14 2022

A335375 Numbers k such that the k-th composition in standard order (A066099) is neither unimodal nor co-unimodal.

Original entry on oeis.org

45, 54, 77, 89, 91, 93, 102, 108, 109, 110, 118, 141, 153, 155, 157, 166, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189, 198, 204, 205, 206, 214, 216, 217, 218, 219, 220, 221, 222, 230, 236, 237, 238, 246, 269, 281, 283, 285, 297, 301, 305, 306, 307, 309
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   45: (2,1,2,1)
   54: (1,2,1,2)
   77: (3,1,2,1)
   89: (2,1,3,1)
   91: (2,1,2,1,1)
   93: (2,1,1,2,1)
  102: (1,3,1,2)
  108: (1,2,1,3)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  118: (1,1,2,1,2)
  141: (4,1,2,1)
  153: (3,1,3,1)
  155: (3,1,2,1,1)
  157: (3,1,1,2,1)
  166: (2,3,1,2)
  173: (2,2,1,2,1)
  177: (2,1,4,1)
  178: (2,1,3,2)
  179: (2,1,3,1,1)
		

Crossrefs

Non-unimodal compositions are ranked by A335373.
Non-co-unimodal compositions are ranked by A335374.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[stc[#]]&&!unimodQ[-stc[#]]&]
Showing 1-4 of 4 results.