A333150 Number of strict compositions of n whose non-adjacent parts are strictly decreasing.
1, 1, 1, 3, 3, 5, 8, 10, 13, 18, 26, 31, 42, 52, 68, 89, 110, 136, 173, 212, 262, 330, 398, 487, 592, 720, 864, 1050, 1262, 1508, 1804, 2152, 2550, 3037, 3584, 4236, 5011, 5880, 6901, 8095, 9472, 11048, 12899, 14996, 17436, 20261, 23460, 27128, 31385, 36189
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 compositions: (1) (2) (3) (4) (5) (6) (7) (8) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (2,1) (3,1) (2,3) (2,4) (2,5) (2,6) (3,2) (4,2) (3,4) (3,5) (4,1) (5,1) (4,3) (5,3) (2,3,1) (5,2) (6,2) (3,1,2) (6,1) (7,1) (3,2,1) (2,4,1) (2,5,1) (4,1,2) (3,4,1) (4,2,1) (4,1,3) (4,3,1) (5,1,2) (5,2,1) For example, (3,5,1,2) is such a composition, because the non-adjacent pairs of parts are (3,1), (3,2), (5,2), all of which are strictly decreasing.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,10}]
-
PARI
seq(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); Vec(sum(k=0, n, fibonacci(k+1) * polcoef(p,k,y)))} \\ Andrew Howroyd, Apr 16 2021
Formula
G.f.: Sum_{k>=0} Fibonacci(k+1) * [y^k](Product_{j>=1} 1 + y*x^j). - Andrew Howroyd, Apr 16 2021
Comments