cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A333159 Triangle read by rows: T(n,k) is the number of non-isomorphic n X n symmetric binary matrices with k ones in every row and column up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 5, 4, 1, 1, 1, 1, 4, 12, 12, 4, 1, 1, 1, 1, 7, 31, 66, 31, 7, 1, 1, 1, 1, 8, 90, 433, 433, 90, 8, 1, 1, 1, 1, 12, 285, 3442, 7937, 3442, 285, 12, 1, 1, 1, 1, 14, 938, 30404, 171984, 171984, 30404, 938, 14, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 10 2020

Keywords

Comments

Rows and columns may be permuted independently. The case that rows and columns must be permuted together is covered by A333161.
T(n,k) is the number of k-regular bicolored graphs on 2n unlabeled nodes which are invariant when the two color classes are exchanged.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 1,  1,   1;
  1, 1,  2,   1,    1;
  1, 1,  2,   2,    1,    1;
  1, 1,  4,   5,    4,    1,    1;
  1, 1,  4,  12,   12,    4,    1,   1;
  1, 1,  7,  31,   66,   31,    7,   1,  1;
  1, 1,  8,  90,  433,  433,   90,   8,  1, 1;
  1, 1, 12, 285, 3442, 7937, 3442, 285, 12, 1, 1;
  ...
The T(2,1) = 1 matrix is:
  [1 0]
  [0 1]
.
The T(4,2)= 2 matrices are:
  [1 1 0 0]   [1 1 0 0]
  [1 1 0 0]   [1 0 1 0]
  [0 0 1 1]   [0 1 0 1]
  [0 0 1 1]   [0 0 1 1]
		

Crossrefs

Columns k=0..4 are A000012, A000012, A002865, A000840, A000843.
Row sums are A333160.
Central coefficients are A333165.

Formula

T(n,k) = T(n,n-k).