A133687
Triangle with number of equivalence classes of n X n matrices over {0,1} with rows and columns summing to k (0<=k<=n), where equivalence is defined by row and column permutations.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 7, 4, 1, 1, 1, 1, 4, 16, 16, 4, 1, 1, 1, 1, 7, 51, 194, 51, 7, 1, 1, 1, 1, 8, 224, 3529, 3529, 224, 8, 1, 1, 1, 1, 12, 1165, 121790, 601055, 121790, 1165, 12, 1, 1, 1, 1, 14, 7454, 5582612, 156473848, 156473848, 5582612, 7454, 14, 1, 1
Offset: 0
Joost Vermeij (joost_vermeij(AT)live.nl), Jan 04 2008
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 1, 2, 1, 1;
1, 1, 2, 2, 1, 1;
1, 1, 4, 7, 4, 1, 1;
1, 1, 4, 16, 16, 4, 1, 1;
1, 1, 7, 51, 194, 51, 7, 1, 1;
1, 1, 8, 224, 3529, 3529, 224, 8, 1, 1;
...
A333157
Triangle read by rows: T(n,k) is the number of n X n symmetric binary matrices with k ones in every row and column.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 18, 10, 1, 1, 26, 112, 112, 26, 1, 1, 76, 820, 1760, 820, 76, 1, 1, 232, 6912, 35150, 35150, 6912, 232, 1, 1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1, 1, 2620, 708256, 24243520, 133948836, 133948836, 24243520, 708256, 2620, 1
Offset: 0
Triangle begins:
1,
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 10, 18, 10, 1;
1, 26, 112, 112, 26, 1;
1, 76, 820, 1760, 820, 76, 1;
1, 232, 6912, 35150, 35150, 6912, 232, 1;
1, 764, 66178, 848932, 1944530, 848932, 66178, 764, 1;
...
-
\\ See script in A295193 for comments.
GraphsByDegreeSeq(n, limit, ok)={
local(M=Map(Mat([x^0,1])));
my(acc(p,v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
my(recurse(r,p,i,q,v,e) = if(e<=limit && poldegree(q)<=limit, if(i<0, if(ok(x^e+q, r), acc(x^e+q, v)), my(t=polcoeff(p,i)); for(k=0,t,self()(r,p,i-1,(t-k+x*k)*x^i+q,binomial(t,k)*v,e+k)))));
for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i,1]); recurse(n-k, p, poldegree(p), 0, src[i,2], 0))); Mat(M);
}
Row(n)={my(M=GraphsByDegreeSeq(n, n\2, (p,r)->poldegree(p)-valuation(p,x) <= r + 1), v=vector(n+1)); for(i=1, matsize(M)[1], my(p=M[i,1], d=poldegree(p)); v[1+d]+=M[i,2]; if(pollead(p)==n, v[2+d]+=M[i,2])); for(i=1, #v\2, v[#v+1-i]=v[i]); v}
for(n=0, 8, print(Row(n))) \\ Andrew Howroyd, Mar 14 2020
A333737
Array read by antidiagonals: T(n,k) is the number of non-isomorphic n X n nonnegative integer symmetric matrices with all row and column sums equal to k up to permutations of rows and columns.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 5, 5, 1, 1, 1, 1, 3, 9, 12, 7, 1, 1, 1, 1, 4, 13, 33, 29, 11, 1, 1, 1, 1, 4, 20, 74, 142, 79, 15, 1, 1, 1, 1, 5, 28, 163, 556, 742, 225, 22, 1, 1, 1, 1, 5, 39, 319, 1919, 5369, 4454, 677, 30, 1, 1
Offset: 0
Array begins:
==============================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 2 2 3 3 4 4 ...
3 | 1 1 3 5 9 13 20 28 ...
4 | 1 1 5 12 33 74 163 319 ...
5 | 1 1 7 29 142 556 1919 5793 ...
6 | 1 1 11 79 742 5369 31781 156191 ...
7 | 1 1 15 225 4454 64000 692599 5882230 ...
...
The T(3,3) = 5 matrices are:
[0 0 3] [0 1 2] [0 1 2] [1 0 2] [1 1 1]
[0 3 0] [1 1 1] [1 2 0] [0 3 0] [1 1 1]
[3 0 0] [2 1 0] [2 0 1] [2 0 1] [1 1 1]
A008327
Triangle read by rows: T(n,k) is the number of simple regular bipartite graphs with 2n nodes and degree k, (0 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 6, 4, 1, 1, 1, 1, 4, 14, 14, 4, 1, 1, 1, 1, 7, 41, 130, 41, 7, 1, 1, 1, 1, 8, 157, 1981, 1981, 157, 8, 1, 1, 1, 1, 12, 725, 62616, 304496, 62616, 725, 12, 1, 1, 1, 1, 14, 4196, 2806508, 78322916
Offset: 0
Triangle begins:
1,
1, 1,
1, 1, 1,
1, 1, 1, 1,
1, 1, 2, 1, 1,
1, 1, 2, 2, 1, 1,
1, 1, 4, 6, 4, 1, 1;
1, 1, 4, 14, 14, 4, 1, 1;
1, 1, 7, 41, 130, 41, 7, 1, 1;
1, 1, 8, 157, 1981, 1981, 157, 8, 1, 1;
...
More terms from Eric Rogoyski, May 15 1997
A008326
Triangle read by rows: T(n,k) is the number of simple regular connected bipartite graphs with 2n nodes and degree k, (2 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 13, 14, 4, 1, 1, 1, 38, 129, 41, 7, 1, 1, 1, 149, 1980, 1981, 157, 8, 1, 1, 1, 703, 62611, 304495, 62616, 725, 12, 1, 1, 1, 4132, 2806490, 78322915, 78322916, 2806508, 4196, 14, 1, 1, 1, 29579, 158937213, 27033154060, 147252447227, 27033154065, 158937367, 29817, 21, 1, 1
Offset: 2
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 5, 4, 1, 1;
1, 13, 14, 4, 1, 1;
1, 38, 129, 41, 7, 1, 1;
1, 149, 1980, 1981, 157, 8, 1, 1;
...
More terms from Eric Rogoyski, May 15 1997
A333161
Triangle read by rows: T(n,k) is the number of k-regular graphs on n unlabeled nodes with half-edges.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 3, 4, 4, 3, 1, 1, 4, 8, 12, 8, 4, 1, 1, 4, 10, 24, 24, 10, 4, 1, 1, 5, 17, 70, 118, 70, 17, 5, 1, 1, 5, 24, 172, 634, 634, 172, 24, 5, 1, 1, 6, 36, 525, 4428, 9638, 4428, 525, 36, 6, 1, 1, 6, 50, 1530, 35500, 187990, 187990, 35500, 1530, 50, 6, 1
Offset: 0
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 2, 2, 1;
1, 3, 3, 3, 1;
1, 3, 4, 4, 3, 1;
1, 4, 8, 12, 8, 4, 1;
1, 4, 10, 24, 24, 10, 4, 1;
1, 5, 17, 70, 118, 70, 17, 5, 1;
1, 5, 24, 172, 634, 634, 172, 24, 5, 1;
1, 6, 36, 525, 4428, 9638, 4428, 525, 36, 6, 1;
...
The a(2,1) = 2 adjacency matrices are:
[0 1] [1 0]
[1 0] [0 1]
.
The A(4,2) = 3 adjacency matrices are:
[0 0 1 1] [1 1 0 0] [1 1 0 0]
[0 0 1 1] [1 1 0 0] [1 0 1 0]
[1 1 0 0] [0 0 1 1] [0 1 0 1]
[1 1 0 0] [0 0 1 1] [0 0 1 1]
A000840
Number of cubic bicolored graphs on n unlabeled nodes admitting an automorphism exchanging the colors.
Original entry on oeis.org
0, 0, 1, 1, 2, 5, 12, 31, 90, 285, 938, 3285, 11983, 45390, 177803, 718390, 2986407, 12749364, 55802982, 250068732, 1145923828, 5363795830, 25620207380, 124767647097, 618983876918, 3126035142910, 16060182735947, 83883575376862, 445164927249466, 2399098651337048
Offset: 1
A333160
Number of non-isomorphic n X n symmetric binary matrices with an equal number of ones in every row and column up to permutation of rows and columns.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 17, 36, 146, 1066, 15419, 406684, 19284912, 1635874946, 249424764407, 68725494158824, 34418706513939926, 31487353344361957012, 52887877379630894268187, 163777247316556715401451972, 939121048579630147375554814224
Offset: 0
The a(2) = 3 matrices are:
[0 0] [1 0] [1 1]
[0 0] [0 1] [1 1]
A333165
Number of non-isomorphic 2n X 2n symmetric matrices with entries in {+1, -1} and all rows and columns summing to zero.
Original entry on oeis.org
1, 1, 2, 5, 66, 7937, 10211144, 133506398361, 18551599312980440, 28652629505982770906471, 510824181488832447063505273252
Offset: 0
The a(1) = 1 matrix is:
[+ -]
[- +]
The a(2) = 2 matrices are:
[+ + - -] [+ + - -]
[+ + - -] [+ - + -]
[- - + +] [- + - +]
[- - + +] [- - + +]
A000843
Number of quartic bicolored graphs on n unlabeled nodes admitting an automorphism exchanging the colors.
Original entry on oeis.org
0, 0, 0, 1, 1, 4, 12, 66, 433, 3442, 30404, 294951, 3093770, 34846185, 419020738, 5355289843, 72466668921, 1034818990771, 15548633703424, 245182764121059, 4047990858838185, 69826392559499108, 1256005988628521464, 23517396850332614602, 457623646061902648705
Offset: 1
Showing 1-10 of 11 results.
Comments