cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A133687 Triangle with number of equivalence classes of n X n matrices over {0,1} with rows and columns summing to k (0<=k<=n), where equivalence is defined by row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 7, 4, 1, 1, 1, 1, 4, 16, 16, 4, 1, 1, 1, 1, 7, 51, 194, 51, 7, 1, 1, 1, 1, 8, 224, 3529, 3529, 224, 8, 1, 1, 1, 1, 12, 1165, 121790, 601055, 121790, 1165, 12, 1, 1, 1, 1, 14, 7454, 5582612, 156473848, 156473848, 5582612, 7454, 14, 1, 1
Offset: 0

Views

Author

Joost Vermeij (joost_vermeij(AT)live.nl), Jan 04 2008

Keywords

Comments

T(n,k) = T(n,n-k). When 0 and 1 are switched, the number of equivalence classes remain the same.
Terms may be computed without generating each matrix by enumerating the number of matrices by column sum sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A008300. Burnside's lemma can be used to extend this method to the unlabeled case. This seems to require looping over partitions for both rows and columns. The number of partitions squared increases rapidly with n. For example, A000041(20)^2 = 393129. - Andrew Howroyd, Apr 03 2020

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 1,   1;
  1, 1, 2,   1,    1;
  1, 1, 2,   2,    1,    1;
  1, 1, 4,   7,    4,    1,   1;
  1, 1, 4,  16,   16,    4,   1, 1;
  1, 1, 7,  51,  194,   51,   7, 1, 1;
  1, 1, 8, 224, 3529, 3529, 224, 8, 1, 1;
  ...
		

Crossrefs

Columns k=0..5 are A000012, A000012, A002865, A000512, A000513, A000516.
Row sums are A333681.
T(2n,n) gives A333740.
Cf. A000519, A008300 (labeled case), A008327 (bipartite graphs), A333159 (symmetric case).

Formula

Sum_{k=1..n} T(n, k) = A000519(n).

Extensions

Missing a(72) inserted by Andrew Howroyd, Apr 01 2020

A333159 Triangle read by rows: T(n,k) is the number of non-isomorphic n X n symmetric binary matrices with k ones in every row and column up to permutation of rows and columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 5, 4, 1, 1, 1, 1, 4, 12, 12, 4, 1, 1, 1, 1, 7, 31, 66, 31, 7, 1, 1, 1, 1, 8, 90, 433, 433, 90, 8, 1, 1, 1, 1, 12, 285, 3442, 7937, 3442, 285, 12, 1, 1, 1, 1, 14, 938, 30404, 171984, 171984, 30404, 938, 14, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 10 2020

Keywords

Comments

Rows and columns may be permuted independently. The case that rows and columns must be permuted together is covered by A333161.
T(n,k) is the number of k-regular bicolored graphs on 2n unlabeled nodes which are invariant when the two color classes are exchanged.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 1,  1,   1;
  1, 1,  2,   1,    1;
  1, 1,  2,   2,    1,    1;
  1, 1,  4,   5,    4,    1,    1;
  1, 1,  4,  12,   12,    4,    1,   1;
  1, 1,  7,  31,   66,   31,    7,   1,  1;
  1, 1,  8,  90,  433,  433,   90,   8,  1, 1;
  1, 1, 12, 285, 3442, 7937, 3442, 285, 12, 1, 1;
  ...
The T(2,1) = 1 matrix is:
  [1 0]
  [0 1]
.
The T(4,2)= 2 matrices are:
  [1 1 0 0]   [1 1 0 0]
  [1 1 0 0]   [1 0 1 0]
  [0 0 1 1]   [0 1 0 1]
  [0 0 1 1]   [0 0 1 1]
		

Crossrefs

Columns k=0..4 are A000012, A000012, A002865, A000840, A000843.
Row sums are A333160.
Central coefficients are A333165.

Formula

T(n,k) = T(n,n-k).

A008326 Triangle read by rows: T(n,k) is the number of simple regular connected bipartite graphs with 2n nodes and degree k, (2 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 13, 14, 4, 1, 1, 1, 38, 129, 41, 7, 1, 1, 1, 149, 1980, 1981, 157, 8, 1, 1, 1, 703, 62611, 304495, 62616, 725, 12, 1, 1, 1, 4132, 2806490, 78322915, 78322916, 2806508, 4196, 14, 1, 1, 1, 29579, 158937213, 27033154060, 147252447227, 27033154065, 158937367, 29817, 21, 1, 1
Offset: 2

Views

Author

Brendan McKay and Eric Rogoyski

Keywords

Comments

This sequence can be derived from A133687 and A333159. In particular, if w(n) is the inverse Euler transform of column k of A133687 and s(n) is the inverse Euler transform of column k of A333159, then 2*T(2*n+1,k) = w(2*n+1) + s(2*n+1) and 2*T(2*n,k) = w(2*n) + s(2*n) - w(n) + T(n,k). - Andrew Howroyd, Apr 03 2020

Examples

			Triangle begins:
  1;
  1,   1;
  1,   1,    1;
  1,   2,    1,    1;
  1,   5,    4,    1,   1;
  1,  13,   14,    4,   1, 1;
  1,  38,  129,   41,   7, 1, 1;
  1, 149, 1980, 1981, 157, 8, 1, 1;
  ...
		

Crossrefs

Columns k=3..7 are A006823, A006824, A006825, A014385, A014387.
Row sums are in A008323.

Extensions

More terms from Eric Rogoyski, May 15 1997
Name clarified by Andrew Howroyd, Sep 05 2018
Terms a(55) and beyond from Andrew Howroyd, Apr 03 2020

A008325 Number of simple regular trivalent bipartite graphs with 2n nodes.

Original entry on oeis.org

1, 1, 2, 6, 14, 41, 157, 725, 4196, 29816, 246644, 2297075, 23503477, 260265023, 3090336300, 39101547971, 524782945991, 7443247863498, 111221983956652, 1746165682538497, 28734206614035245, 494526496354065244, 8883865784392246280, 166286434745252091055, 3237719048384605059117, 65477287940472122129194
Offset: 3

Views

Author

Keywords

Comments

Euler transform of A006823. - Peter J. Taylor, Sep 28 2017

Crossrefs

Column k=3 of A008327.
Cf. A004066 (bicolored), A006823 (connected).

Programs

  • Mathematica
    A006823 = Cases[Import["https://oeis.org/A006823/b006823.txt", "Table"], {, }][[All, 2]];
    etr[f_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d f[d], {d, Divisors[j]}] b[n - j], {j, 1, n}]/n]; b];
    b[n_] := If[n >= 3, A006823[[n - 2]], 0];
    a = etr[b];
    a /@ Range[3, 16] (* Jean-François Alcover, Dec 03 2019 *)

Extensions

a(15)-a(16) from Peter J. Taylor, Sep 28 2017
Terms a(17) and beyond from Andrew Howroyd, Apr 03 2020

A008324 Number of simple regular bipartite graphs with 2n nodes.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 18, 40, 230, 4296, 431206, 162267272, 201636689771, 777816803942186, 9865957936943931964, 395886667549681689591841, 53716176608076643470621234239, 23524515269630339982914646821899537, 35682168849414944013547274452501768506834
Offset: 0

Views

Author

Keywords

Comments

First differs from A333732 at n = 12. - Andrew Howroyd, Apr 03 2020

Crossrefs

Row sums of A008327.

Extensions

a(0)=1 prepended and terms a(11) and beyond from Andrew Howroyd, Apr 03 2020

A333730 Number of simple 4-regular bipartite graphs with 2n nodes.

Original entry on oeis.org

0, 0, 0, 1, 1, 4, 14, 130, 1981, 62616, 2806508, 158937367, 10773254138, 855658147832, 78558952717569, 8251166899386729, 982806390786806618, 131756175056777580011, 19748565975966429686408, 3289970442222058710279611, 605948437043760750748781907, 122796504004669690100342096563
Offset: 1

Views

Author

Andrew Howroyd, Apr 03 2020

Keywords

Crossrefs

Column k=4 of A008327.

Formula

Euler transform of A006824.

A333731 Number of simple 5-regular bipartite graphs with 2n nodes.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 4, 41, 1981, 304496, 78322916, 27033154065, 11934777413049, 6593485023089912, 4485517185017734885, 3707462300996644966161, 3680029088808704302571244, 4341813441626431900011624077, 6033239205199253768404631967656, 9792722283774379198364367866020815
Offset: 1

Views

Author

Andrew Howroyd, Apr 03 2020

Keywords

Crossrefs

Column k=5 of A008327.

Formula

Euler transform of A006825.

A087114 Number of regular bipartite simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 6, 1, 8, 1, 18, 1, 40, 1, 230, 1, 4296, 1, 431206, 1, 162267272, 1, 201636689771, 1, 777816803942186, 1, 9865957936943931964, 1, 395886667549681689591841, 1, 53716176608076643470621234239, 1, 23524515269630339982914646821899537, 1, 35682168849414944013547274452501768506834, 1
Offset: 0

Views

Author

Eric W. Weisstein, Aug 13 2003

Keywords

Comments

A graph must be regular and bipartite to be a semisymmetric graph.

Crossrefs

Formula

a(2*n + 1) = 1, a(2*n) = A008324(n). - Andrew Howroyd, Sep 05 2018

Extensions

a(10)-a(19) from Andrew Howroyd, Sep 05 2018
a(0)=1 prepended and a(20) onwards added by Andrew Howroyd, Feb 21 2024
Showing 1-8 of 8 results.