cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A008327 Triangle read by rows: T(n,k) is the number of simple regular bipartite graphs with 2n nodes and degree k, (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 4, 6, 4, 1, 1, 1, 1, 4, 14, 14, 4, 1, 1, 1, 1, 7, 41, 130, 41, 7, 1, 1, 1, 1, 8, 157, 1981, 1981, 157, 8, 1, 1, 1, 1, 12, 725, 62616, 304496, 62616, 725, 12, 1, 1, 1, 1, 14, 4196, 2806508, 78322916
Offset: 0

Views

Author

Keywords

Comments

This sequence can be derived from A008326 by Euler transform. - Andrew Howroyd, Apr 03 2020

Examples

			Triangle begins:
  1,
  1, 1,
  1, 1, 1,
  1, 1, 1,   1,
  1, 1, 2,   1,    1,
  1, 1, 2,   2,    1,    1,
  1, 1, 4,   6,    4,    1,   1;
  1, 1, 4,  14,   14,    4,   1, 1;
  1, 1, 7,  41,  130,   41,   7, 1, 1;
  1, 1, 8, 157, 1981, 1981, 157, 8, 1, 1;
  ...
		

Crossrefs

Column k=0..5 are A000012, A000012, A002865, A008325, A333730, A333731.
Row sums are A008324.

Formula

Column k is the Euler transform of column k of A008326. - Andrew Howroyd, Apr 03 2020

Extensions

More terms from Eric Rogoyski, May 15 1997
Name clarified by Andrew Howroyd, Sep 05 2018

A008323 Number of simple connected regular bipartite graphs with 2n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 12, 34, 218, 4278, 431165, 162267174, 201636689352, 777816803938932, 9865957936943859185, 395886667549681686369527, 53716176608076643470380213991, 23524515269630339982914608683548933, 35682168849414944013547274439525153167248
Offset: 0

Views

Author

Keywords

Crossrefs

For n > 1, these are the row sums of triangle A008326.

Extensions

a(10) corrected and a(11) added by Brendan McKay, Sep 06 2018
a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Apr 03 2020

A087114 Number of regular bipartite simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 6, 1, 8, 1, 18, 1, 40, 1, 230, 1, 4296, 1, 431206, 1, 162267272, 1, 201636689771, 1, 777816803942186, 1, 9865957936943931964, 1, 395886667549681689591841, 1, 53716176608076643470621234239, 1, 23524515269630339982914646821899537, 1, 35682168849414944013547274452501768506834, 1
Offset: 0

Views

Author

Eric W. Weisstein, Aug 13 2003

Keywords

Comments

A graph must be regular and bipartite to be a semisymmetric graph.

Crossrefs

Formula

a(2*n + 1) = 1, a(2*n) = A008324(n). - Andrew Howroyd, Sep 05 2018

Extensions

a(10)-a(19) from Andrew Howroyd, Sep 05 2018
a(0)=1 prepended and a(20) onwards added by Andrew Howroyd, Feb 21 2024

A333732 Number of non-isomorphic n X n binary matrices with equal row and column sums up to permutation of rows and columns and transposition.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 18, 40, 230, 4296, 431206, 162267272, 201636689772, 777816803942188, 9865957936943931980, 395886667549681689592056, 53716176608076643470621240097, 23524515269630339982914646822137232, 35682168849414944013547274452501783251521
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2020

Keywords

Comments

Number of simple regular bicolored graphs on 2n unlabeled nodes and allowing the color classes to be interchanged.
First differs from A008324 at n=12. See the note in A004066 by Sean A. Irvine for an explanation of why these two sequences are different.

Crossrefs

Formula

a(n) = (A333160(n) + A333681(n)) / 2.
a(n) >= A008324(n).
Showing 1-4 of 4 results.