cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A332905 Decimal expansion of Sum_{p prime, k>=1} 1 / 2^(p^k).

Original entry on oeis.org

4, 8, 3, 0, 5, 7, 1, 8, 1, 1, 2, 5, 9, 0, 9, 5, 6, 4, 9, 3, 2, 1, 6, 9, 7, 9, 8, 5, 2, 5, 6, 0, 3, 8, 8, 4, 7, 9, 3, 2, 6, 0, 0, 7, 4, 3, 5, 4, 8, 9, 4, 9, 0, 6, 2, 8, 2, 6, 0, 8, 5, 6, 9, 9, 9, 1, 1, 3, 8, 6, 2, 6, 0, 5, 0, 6, 9, 3, 1, 1, 7, 1, 0, 3, 5, 5, 9, 2, 2, 2, 3, 4, 1, 7, 9, 5, 3, 6, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 10 2020

Keywords

Comments

Prime power constant: binary expansion is the characteristic function of prime powers (A069513).

Examples

			0.48305718112590956493... = (0.0111101110...)_2.
                                |||| |||
                                2345 789
		

Crossrefs

A371134 Decimal expansion of Sum_{squarefree k>=1} k / 2^k.

Original entry on oeis.org

1, 6, 9, 7, 9, 0, 7, 8, 1, 9, 7, 7, 9, 6, 2, 5, 0, 6, 4, 4, 6, 4, 2, 4, 0, 8, 9, 9, 6, 5, 3, 4, 7, 8, 9, 1, 8, 4, 3, 6, 3, 5, 1, 5, 3, 1, 8, 8, 6, 2, 4, 7, 2, 6, 3, 4, 0, 6, 9, 9, 8, 6, 0, 8, 9, 0, 8, 9, 5, 4, 1, 2, 9, 0, 6, 1, 4, 3, 9, 7, 7, 3, 9, 2, 0, 3, 0, 0, 8, 6, 5, 3, 4, 4, 7, 1, 8, 7, 7, 5, 2, 9, 5, 0, 4
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2024

Keywords

Comments

Erdős (1981) conjectured and Chen and Ruzsa (1999) proved that this constant is irrational.

Examples

			1.69790781977962506446424089965347807016709423133847...
		

Crossrefs

Programs

  • Magma
    m:= 510;
    S:= func< n | (&+[j/2^j: j in [1..3*m] | IsSquarefree(j)]) >;
    Prune(Reverse(IntegerToSequence(Floor(S(m)*10^( Floor(m/2)) )))); // G. C. Greubel, Sep 06 2025
    
  • Mathematica
    RealDigits[Sum[n/2^n, {n, Select[Range[1000], SquareFreeQ]}], 10, 120][[1]]
  • SageMath
    numerical_approx( sum(k/2^k for k in range(1,1000) if abs(moebius(k)) == 1 ) , digits=265 ) # G. C. Greubel, Sep 06 2025

Formula

Equals Sum_{k>=1} A005117(k) / 2^A005117(k).
Equals Sum_{k>=1} k * mu(k)^2 / 2^k.
Showing 1-2 of 2 results.