A333213 Triangle read by rows where T(n,k) is the number of compositions of n with k adjacent terms that are equal or increasing (weak ascents) n >= 0, 0 <= k <= n.
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 4, 1, 1, 0, 3, 6, 5, 1, 1, 0, 4, 10, 10, 6, 1, 1, 0, 5, 17, 20, 13, 7, 1, 1, 0, 6, 27, 38, 31, 16, 8, 1, 1, 0, 8, 40, 69, 67, 42, 19, 9, 1, 1, 0, 10, 58, 123, 132, 101, 54, 22, 10, 1, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 2 1 1 0 2 4 1 1 0 3 6 5 1 1 0 4 10 10 6 1 1 0 5 17 20 13 7 1 1 0 6 27 38 31 16 8 1 1 0 8 40 69 67 42 19 9 1 1 0 10 58 123 132 101 54 22 10 1 1 0 12 86 202 262 218 139 67 25 11 1 1 0 15 121 332 484 467 324 182 81 28 12 1 1 Row n = 6 counts the following compositions: (6) (15) (114) (1113) (11112) (111111) (42) (24) (123) (1122) (51) (33) (222) (11121) (321) (132) (1131) (11211) (141) (1212) (12111) (213) (1221) (21111) (231) (1311) (312) (2112) (411) (2211) (2121) (3111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Compositions by length are A007318.
The case of reversed partitions (instead of compositions) is A008284.
The version counting equal adjacencies is A106356.
The case of partitions (instead of compositions) is A133121.
The version counting unequal adjacencies is A238279.
The strict/strong version is A238343.
Programs
-
Mathematica
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[Split[#,#1>#2&]]==k&]],{n,0,12},{k,0,n}]
-
PARI
T(n)={my(M=matrix(n+1, n+1)); M[1,1]=x; for(n=1, n, for(k=1, n, M[1+n,1+k] = M[1+n,1+k-1] + x*M[1+n-k, 1+n-k] + (1-x)*M[1+n-k, 1+min(k-1, n-k)])); M[1,1]=1; vector(n+1, i, Vecrev(M[i,i]))} { my(A=T(12)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023
Comments