A333235 a(n) is the product of indices of unitary prime power divisors of n.
1, 1, 2, 3, 4, 2, 5, 6, 7, 4, 8, 6, 9, 5, 8, 10, 11, 7, 12, 12, 10, 8, 13, 12, 14, 9, 15, 15, 16, 8, 17, 18, 16, 11, 20, 21, 19, 12, 18, 24, 20, 10, 21, 24, 28, 13, 22, 20, 23, 14, 22, 27, 24, 15, 32, 30, 24, 16, 25, 24, 26, 17, 35, 27, 36, 16, 28, 33, 26, 20
Offset: 1
Examples
a(600) = a(2^3 * 3 * 5^2) = a(A246655(6) * A246655(2) * A246655(14)) = 6 * 2 * 14 = 168.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # for a(1)..a(N) R:= NULL: p:= 2: while p < N do R:= R, seq(p^k,k=1..ilog[p](N)); p:= nextprime(p); od: L:= sort([R]): f:= proc(n) local F, t; F:= ifactors(n)[2]; mul(ListTools:-BinarySearch(L,t[1]^t[2]),t=F) end proc: map(f, [$1..N]); # Robert Israel, Feb 11 2021
-
Mathematica
PrimePowerPi[n_] := Sum[Boole[PrimePowerQ[k]], {k, 1, n}]; a[1] = 1; a[n_] := Times @@ (PrimePowerPi[#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 70}]
-
PARI
apply( {A333235(n)=vecprod([A322981(f[1]^f[2])|f<-factor(n)~])}, [1..99]) \\ M. F. Hasler, Jun 16 2021
Comments