A333323 Number of self-avoiding closed paths on an n X n grid which pass through NW and SE corners.
1, 3, 42, 1799, 232094, 92617031, 115156685746, 442641690778179, 5224287477491915786, 188825256606226776728029, 20879416139356164466643759334, 7057757437924198729598570424130207, 7287699030020917172151307665469211016474, 22973720258279267139936821063450448822110219653
Offset: 2
Keywords
Examples
a(2) = 1; +--* | | *--+ a(3) = 3; +--*--* +--*--* +--* | | | | | | *--* * * * * *--* | | | | | | *--+ *--*--+ *--*--+
Links
- Anthony J. Guttmann and Iwan Jensen, Table of n, a(n) for n = 2..27
- Anthony J. Guttmann and Iwan Jensen, Self-avoiding walks and polygons crossing a domain on the square and hexagonal lattices, arXiv:2208.06744 [math-ph], Aug 13 2022, Table D2 (with offset 1).
- Anthony J. Guttmann and Iwan Jensen, The gerrymander sequence, or A348456, arXiv:2211.14482 [math.CO], 2022.
Programs
Extensions
a(11) from Seiichi Manyama, Apr 07 2020
a(10) and a(12)-a(15) from Vaclav Kotesovec, Aug 16 2022 (computed by Anthony Guttmann)